Iwasawa Theory for Extensions with Restricted *p*-Ramification

Yoshitaka HACHIMORI

Gakushuin University (Communicated by T. Kawasaki)

1. Introduction

Let *p* be a prime number. For an algebraic number field *K* of finite degree, consider an (arbitrary) subset *T* of P(K), where P(K) is the set of all primes above *p* of *K*:

$$T \subset P(K)$$
.

Let K_{∞} be the cyclotomic \mathbb{Z}_p -extension of K and $T_{\infty} \subset P(K_{\infty})$ the set of primes above T of K_{∞} . Then, by $\mathcal{M}_{T_{\infty}}(K_{\infty})$, we denote the maximal abelian p-extension of K_{∞} unramified outside T_{∞} . We call such an extension "the extension with restricted p-ramification".

Since $\Gamma := \operatorname{Gal}(K_{\infty}/K)$ acts on the Galois group

$$\mathcal{Y}_{T_{\infty}}(K_{\infty}) := \operatorname{Gal}(\mathcal{M}_{T_{\infty}}(K_{\infty})/K_{\infty})$$

by conjugation, it is regarded as a module over the power series ring $\Lambda := \mathbb{Z}_p[[T]]$ in the usual manner. This is finitely generated over Λ .

In this article, we investigate the following question: What are the Λ -rank of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ and the μ -invariant of its Λ -torsion part $\mu(\mathcal{Y}_{T_{\infty}}(K_{\infty})_{\Lambda-tor})$?

When $T = \emptyset$ (empty set), it is well known that $\mathcal{Y}_{\emptyset}(K_{\infty})$ has Λ -rank zero by a result of Iwasawa and that it is conjectured that its μ -invariant vanishes. This is verified when K is an abelian field by Ferrero and Washington [FeWa]. It is also known that $\operatorname{rank}_{\Lambda}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) = r_2$ if T = P(K), where r_2 is the number of complex primes of K. The μ -invariant of the Λ torsion part of $\mathcal{Y}_{T_{\infty}}(K_{\infty})$ is also conjectured to be zero and proved if K is abelian.

In case of *CM*-fields, the answer to the above question is known completely (cf. [JaMa]. See also Theorem 4.5 below).

On the other hand, for a general base field *K* and $T \subset P(K)$, we have a trivial lower bound of the Λ -rank (Proposition 2.3):

$$\operatorname{rank}_{\Lambda}(\mathcal{Y}_{T_{\infty}}(K_{\infty})) \ge r_2 - \sum_{v \in P(K) - T} [K_v : \mathbf{Q}_p].$$

However, we do not know how the Λ -rank should be in general. We give the following partial result by applying the methods of Ax and Brumer.

Received June 10, 2002