On a Characteristic Function of the Tensor *K*-module of Inner Type Noncompact Real Simple Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let C (resp. R) denote the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\mathbf{C}}$ and a connected noncompact inner type simple real form G of $G_{\mathbb{C}}$. Let K be a maximal compact subgroup of G. We denote the Lie algebras of G and K respectively by $\mathfrak g$ and $\mathfrak k$. Let θ be the Cartan involution of $\mathfrak g$ corresponding to \mathfrak{k} . Let's denote the eigensubspace of θ of \mathfrak{g} with the eigenvalue -1 by \mathfrak{p} . Then we have a Cartan decomposition: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Consequently the Lie algebra $\mathfrak{g}_{\mathbb{C}}$ of $G_{\mathbb{C}}$ is also decomposed by $\mathfrak{g}_C = \mathfrak{k}_C \oplus \mathfrak{p}_C$, where \mathfrak{k}_C (resp. \mathfrak{p}_C) is the complexification of \mathfrak{k} (resp. \mathfrak{p}) in \mathfrak{g}_C . Canonically K acts on the space $\mathfrak{p}_{\mathbb{C}}$. Let B be a maximal abelian subgroup of K. Since K is connected and G is an inner type simple Lie group, B is also a maximal abelian subgruop of G. Therefore B is a Cartan subgroup of G and K. Let $\mathfrak{b}_{\mathbb{C}}$ be the complexification of the Lie algebra \mathfrak{b} of B. Let Σ be the root system of the pair $(\mathfrak{g}_{\mathbb{C}},\mathfrak{b}_{\mathbb{C}})$. Then we have $\Sigma = \Sigma_K \cup \Sigma_n$, where Σ_K (resp. Σ_n) is the set of all compact (resp. noncompact) roots of Σ . We shall fix a positive root system P_K of Σ_K . Let (π_μ, V_μ) be a simple K-module with the highest weight μ . Then the tensor space $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ is a unitary K-module. Let ν be a P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$ and V_{ν} a simple K-module corresponding to ν . We define a projection operator P_{ν} on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by

$$P_{\nu}(Z) = \deg \pi_{\nu} \int_{K} k Z \overline{\operatorname{trace} \pi_{\nu}(k)} dk \quad \text{ for } Z \text{ in } \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu} ,$$

where dk is the Haar measure on K normalized as $\int_K dk = 1$. Let Γ_K be the set of all P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$. Then we have the following decomposition:

$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_{n}, \mu + \omega \in \Gamma_{K}} P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}),$$

where $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}}\otimes V_{\mu})=\{0\}$ or is a simple K-module. The purpose of this paper is to characterize nontrivial K-module $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}}\otimes V_{\mu})$ by using a rational function. Let us state our results more precisely. We can prove that $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}}\otimes V_{\mu})$ is nontrivial if and only if