Токуо J. Матн. Vol. 26, No. 2, 2003

Cutting and Pasting of Families of Submanifolds Modeled on Z₂-Manifolds

Katsuhiro KOMIYA

Yamaguchi University

(Communicated by T. Kawasaki)

Introduction

All manifolds considered in this paper are in the smooth category, and they are all unoriented, with or without boundary. \mathbb{Z}_2 denotes the cyclic group of order 2.

We will consider families of submanifolds of a manifold, and define the SK-group of such families. We will investigate the relationship between the SK-group of families and the SK-group of \mathbb{Z}_2 -manifolds.

Let $m \ge 0$ be an integer. Let P and Q be m-dimensional compact manifolds with boundary ∂P and ∂Q , respectively, and $\varphi : \partial P \to \partial Q$ be a diffeomorphism. Pasting P and Q along the boundary by φ , we obtain a closed manifold $P \cup_{\varphi} Q$. For another diffeomorphism $\psi : \partial P \to \partial Q$ we obtain another closed manifold $P \cup_{\psi} Q$. The two closed manifolds $P \cup_{\varphi} Q$ and $P \cup_{\psi} Q$ are said to be *obtained from each other by cutting and pasting* (Schneiden und Kleben in German). Two m-dimensional closed manifolds M and N are said to be SK*equivalent* to each other, if there is an m-dimensional closed manifold L such that the disjoint union M + L is obtained from N + L by a finite sequence of cuttings and pastings. This is an equivalence relation on \mathfrak{M}_m , the set of m-dimensional closed manifolds. Note that if M and N are SK-equivalent then $\chi(M) = \chi(N)$ since

$$\chi(P \cup_{\varphi} Q) = \chi(P) + \chi(Q) - \chi(\partial P) = \chi(P \cup_{\psi} Q),$$

where χ denotes the Euler characteristic. Denote by [M] the equivalence class represented by M, and by \mathfrak{M}_m/SK the quotient set of \mathfrak{M}_m by the SK-equivalence. \mathfrak{M}_m/SK becomes a semigroup with the addition induced from the disjoint union of manifolds. The Grothendieck group of \mathfrak{M}_m/SK is called the SK-group of m-dimensional closed manifolds and is denoted by SK_m . This group has been introduced and observed by Karras, Kreck, Neumann and Ossa [7]. Note that [M] = [N] in SK_m if and only if M, N are SK-equivalent to each other.

Let $\mathfrak{M}_m^{\mathbb{Z}_2}$ be the set of *m*-dimensional closed \mathbb{Z}_2 -manifolds. Taking \mathbb{Z}_2 -equivariant diffeomorphisms as pasting diffeomorphisms, we can perform \mathbb{Z}_2 -equivariant cuttings and pastings in $\mathfrak{M}_m^{\mathbb{Z}_2}$ in a similar way as in \mathfrak{M}_m , and define an *SK*-equivalence relation on $\mathfrak{M}_m^{\mathbb{Z}_2}$. Then we

Received November 7, 2002