The Gonality of Singular Plane Curves

Masahito OHKOUCHI and Fumio SAKAI

Saitama University

(Communicated by T. Kawasaki)

1. Introduction

Let $C \subset \mathbf{P}^2$ be an irreducible plane curve of degree d over the complex number field \mathbf{C} . We denote by $\mathbf{C}(C)$ the field of rational functions on C. Let \tilde{C} be the non-singular model of C. Since $\mathbf{C}(\tilde{C}) \cong \mathbf{C}(C)$, a non-constant rational function φ on C induces a non-constant morphism $\varphi: \tilde{C} \to \mathbf{P}^1$. Let deg φ denote the degree of this morphism φ . We remark that deg $\varphi = [\mathbf{C}(C): \mathbf{C}(\varphi)] = \deg(\varphi)_0 = \deg(\varphi)_\infty$. The *gonality* of C, denoted by $\mathrm{Gon}(C)$, is defined to be $\min\{\deg \varphi \mid \varphi \in \mathbf{C}(C) \setminus \mathbf{C}\}$. So by definition, the gonality of C is nothing but the gonality of C. Let ν denote the maximal multiplicity of C. We easily see that $\mathrm{Gon}(C) \leq d - \nu$. We know that the genus of C is equal to $(d-1)(d-2)/2 - \delta$ with $\delta \geq 0$.

THEOREM 1. Let C be an irreducible plane curve of degree d with $\delta \geq \nu$. Letting $d \equiv i \pmod{\nu}$, define

$$R(\nu, \delta, i) = \frac{\nu^2 + (\nu - 2)i}{2\nu(\nu - 1)} + \sqrt{\frac{\delta - \nu}{\nu - 1} + \left(\frac{\nu - 2 + i}{2(\nu - 1)}\right)^2}.$$

If $d/v > R(v, \delta, i)$, then Gon(C) = d - v.

REMARK 1. Theorem 1 is a generalization of Theorem 2.1 in Coppens and Kato [1] where they considered the case in which C has only nodes and ordinary cusps. Note that $R(2, \delta, 0) = 1 + \sqrt{\delta - 2}$, $R(2, \delta, 1) = 1 + \sqrt{\delta - 7/4}$. In general, we have the estimation: $R(\nu, \delta, i) < 1 + \sqrt{\delta/(\nu - 1)}$.

We have $\delta < \nu$ if either (i) C is a smooth curve ($\delta = 0$, $\nu = 1$ and Gon(C) = d - 1 for all $d \ge 2$), or (ii) C has one node or one ordinary cusp ($\delta = 1$ and $\nu = 2$ and Gon(C) = d - 2 for all $d \ge 3$). Cf. [1], [3], [5].

DEFINITION. Let m_1, \dots, m_n denote the multiplicities of all singular points (we include infinitely near singular points) of C. Set $\eta = \sum (m_i/\nu)^2$. Clearly, we have $n \ge \eta \ge 1$.