# On Totally Real Cubic Orders Whose Unit Groups are of Type $\langle a \theta+b, c \theta+d\rangle$ 

Kenji MINEMURA

Nagoya University
(Communicated by A. Mizutani)

## 1. Introduction

Let $\phi(x)$ be a cubic, monic and irreducible polynomial in $x$ with rational integer coefficients and three real roots. We fix one of these roots and denote it by $\theta$. Set $K=\mathbf{Q}(\theta)$, and let $E_{K}$ be the unit group of $K$ and $E_{K}^{+}$the subgroup of $E_{K}$ which consists of units with norm +1 . By Dirichlet's unit theorem, $E_{K}^{+}$is generated by two units and so is $\mathbf{Z}[\theta] \cap E_{K}^{+}$. Hereafter we denote the latter by $E_{\theta}^{+}$. It is difficult to determine the generators of $E_{\theta}^{+}$even though that problem is important for number theory. In this paper, for given $a, b, c, d \in \mathbf{Z}$, we shall find conditions under which $E_{\theta}^{+}=\langle a \theta+b, c \theta+d\rangle$. As a result, we shall obtain new infinite families of $\mathbf{Z}[\theta]$ with explicit generators of $E_{\theta}^{+}$, which will give useful examples for further study.

In 1972, Stender[6] found families of $\phi(x)$ such that $E_{\theta}^{+}=\langle\theta+b, \theta+d\rangle$ for rational integers $b, d$ with $2 \leq b \leq d-3$ by using Berwick's theorem[1]. In 1979, Thomas [7] found families of $\phi(x)$ such that $E_{\theta}^{+}=\langle a \theta+1, \theta+d\rangle$ and $\langle a \theta+1, c \theta+1\rangle$ for rational integers $a, c, d$ with $a \geq 4$ and some other conditions by using the continued fraction expansion of a certain conjugate of $\theta$. In 1995, Grundman [3] modified Thomas's technique for determining fundamental systems of units, and determined all $a$ with $|a|>1$ such that $E_{\theta}^{+}=\langle a \theta+1,2 \theta+3\rangle$ for some totally real number $\theta$ of degree 3 , and found families of $\phi(x)$ for each $a$. We shall further utilize this method under a more general condition that $a \theta+b, c \theta+d \in E_{\theta}^{+}$.

THEOREM 1. For rational integers $a, b, c$ and $d$, assume the following conditions:

1. $|a d-b c|>\max \{|a|,|c|\}, 2 \leq|a|<|b|$ and $2 \leq|c|<|d|$,
2. there exist rational integers $e, f$ and $g$ such that

$$
\begin{equation*}
b^{3}-e a b^{2}+f a^{2} b-g a^{3}=1, \quad d^{3}-e c d^{2}+f c^{2} d-g c^{3}=1 \tag{1}
\end{equation*}
$$

