Токуо J. Матн. Vol. 27, No. 2, 2004

On Totally Real Cubic Orders Whose Unit Groups are of Type $\langle a\theta + b, c\theta + d \rangle$

Kenji MINEMURA

Nagoya University

(Communicated by A. Mizutani)

1. Introduction

Let $\phi(x)$ be a cubic, monic and irreducible polynomial in x with rational integer coefficients and three real roots. We fix one of these roots and denote it by θ . Set $K = \mathbf{Q}(\theta)$, and let E_K be the unit group of K and E_K^+ the subgroup of E_K which consists of units with norm +1. By Dirichlet's unit theorem, E_K^+ is generated by two units and so is $\mathbf{Z}[\theta] \cap E_K^+$. Hereafter we denote the latter by E_{θ}^+ . It is difficult to determine the generators of E_{θ}^+ even though that problem is important for number theory. In this paper, for given $a, b, c, d \in \mathbf{Z}$, we shall find conditions under which $E_{\theta}^+ = \langle a\theta + b, c\theta + d \rangle$. As a result, we shall obtain new infinite families of $\mathbf{Z}[\theta]$ with explicit generators of E_{θ}^+ , which will give useful examples for further study.

In 1972, Stender[6] found families of $\phi(x)$ such that $E_{\theta}^{+} = \langle \theta + b, \theta + d \rangle$ for rational integers b, d with $2 \leq b \leq d - 3$ by using Berwick's theorem[1]. In 1979, Thomas [7] found families of $\phi(x)$ such that $E_{\theta}^{+} = \langle a\theta + 1, \theta + d \rangle$ and $\langle a\theta + 1, c\theta + 1 \rangle$ for rational integers a, c, d with $a \geq 4$ and some other conditions by using the continued fraction expansion of a certain conjugate of θ . In 1995, Grundman [3] modified Thomas's technique for determining fundamental systems of units, and determined all a with |a| > 1 such that $E_{\theta}^{+} = \langle a\theta + 1, 2\theta + 3 \rangle$ for some totally real number θ of degree 3, and found families of $\phi(x)$ for each a. We shall further utilize this method under a more general condition that $a\theta + b, c\theta + d \in E_{\theta}^{+}$.

THEOREM 1. For rational integers a, b, c and d, assume the following conditions:

- 1. $|ad bc| > \max\{|a|, |c|\}, 2 \le |a| < |b| \text{ and } 2 \le |c| < |d|,$
- 2. there exist rational integers e, f and g such that

$$b^{3} - eab^{2} + fa^{2}b - ga^{3} = 1$$
, $d^{3} - ecd^{2} + fc^{2}d - gc^{3} = 1$, (1)

Received November 12, 2002; revised July 26, 2004