Токуо J. Матн. Vol. 28, No. 1, 2005

On a Higher Class Number Formula of Z_p-Extensions

Satoshi FUJII

Waseda University

(Communicated by Y. Yamada)

1. Introduction

Let p be a prime number and k a number field of finite degree over \mathbf{Q} , the rational number field. Let \mathbf{Z}_p be the additive group of p-adic integers, and K/k a \mathbf{Z}_p -extension over k. For an integer $n \ge 0$, we denote by k_n the n-th layer of the extension K/k, namely k_n is the unique intermediate field of K/k such that $[k_n : k] = p^n$. Recently, Ozaki studied the maximal unramified pro-p extensions \tilde{L} of K and \tilde{L}_n of k_n as in what follows. Let $\tilde{G} = \text{Gal}(\tilde{L}/K)$ and $\tilde{G}_n = \text{Gal}(\tilde{L}_n/k_n)$ for all non-negative n. We define the subgroups $C_i(\tilde{G})$ of \tilde{G} by the descending central series

$$\tilde{G} = C_1(\tilde{G}) \supseteq C_2(\tilde{G}) \supseteq \cdots \supseteq C_i(\tilde{G}) \supseteq \cdots, \ C_{i+1}(\tilde{G}) = \overline{[C_i(\tilde{G}), \tilde{G}]}.$$

Then we consider the modules $X^{(i)} = C_i(\tilde{G})/C_{i+1}(\tilde{G})$, and call $X^{(i)}$ the *i*-th Iwasawa module. We define the subgroups $C_i(\tilde{G}_n) \subseteq \tilde{G}_n$ and the modules $X_n^{(i)}$ similar to $C_i(\tilde{G})$ and $X^{(i)}$, respectively. Note that $X_n^{(1)}$ is isomorphic to the Sylow *p*-subgroup of the ideal class group A_{k_n} of k_n and that $X^{(1)}$ is the Iwasawa module X_K of K/k which is defined as the projective limit $\lim_{k \to \infty} A_{k_n}$ with respect to the norm maps. By definition, the complete group ring $\Lambda_{K/k} = \mathbb{Z}_p[[\mathrm{Gal}(K/k)]]$ acts on $X^{(i)}$ in the natural way, namely $\mathrm{Gal}(K/k)$ acts via the inner automorphism. For i = 1, Iwasawa studied the $\Lambda_{K/k}$ -module structure of X_K and deduced the following celebrated formula:

THEOREM A. There exist non-negative integers $\lambda(K/k)$, $\mu(K/k)$ and an integer $\nu(K/k)$ such that

$$#A_{k_n} = p^{\lambda(K/k)n + \mu(K/k)p^n + \nu(K/k)}$$

for all sufficiently large n.

Received September 12, 2003; revised April 28, 2004 2000 Mathematics Subject Classification. Primary 11R23, 11R29. Key words and phrases. Iwasawa's class number formula, higher Iwasawa modules.