Токуо J. Матн. Vol. 30, No. 2, 2007

On Blanchard Manifolds

Masahide KATO and Kazuya KOMADA

Sophia University

Introduction

A compact complex manifold M of dimension 3 is called a *Blanchard manifold*, if its universal covering is biholomorphic to the complement of a projective line ℓ in a three dimensional complex projective space \mathbf{P}^3 . Let Ω denote the complement $\mathbf{P}^3 \setminus \ell$. Then M is given as a quotient space Ω/Γ , where Γ is a group of holomorphic automorphisms of Ω . By [K, Theorem C], we know that

THEOREM A. (1) The group Γ is a subgroup of the projective general linear group PGL(4, **C**).

- (2) Γ contains a free abelian subgroup Γ_0 of finite index.
- (3) By a suitable choice of homogeneous coordinates $[z_0 : z_1 : z_2 : z_3]$ on \mathbf{P}^3 with

$$\ell = \{z_2 = z_3 = 0\},\$$

 Γ_0 is contained in either

(1)	$\left\{ \left(\begin{array}{rrrr} 1 & a & b & c \\ 0 & 1 & a & b \\ 0 & 0 & 1 & a \\ 0 & 0 & 0 & 1 \end{array} \right) \right\}$	Type (A),
or		
(2)	$\left\{ \left(\begin{array}{rrrr} 1 & 0 & a & b \\ 0 & 1 & c & d \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \right\}$	Type (B).

When we say that Γ_0 is of type(A), rank(I - g) = 3 for some $g \in \Gamma_0$. Otherwise, we say that Γ_0 is of type(B). It is known that, if Γ_0 of type(B), rank(I - g) = 2 for any $g \in \Gamma_0 \setminus \{I\}$ ([K, Proposition 5.40]). In this short note we shall prove the following

Mathematics Subject Classification: 32H02, 32J17.

Received February 17, 2005; revised February 26, 2007

Key words: Blanchard manifold, flat projective structure, non-Kähler manifold.