Токуо J. Матн. Vol. 29, No. 2, 2006

Partial Sums of Multiple Zeta Value Series

Chizuru SEKINE

Minami-katsushika High School

(Communicated by H. Midorikawa)

1. Introduction

For $\vec{s} = (s_1, \ldots, s_d) \in \mathbb{N}^d$ with $s_d > 1$, the Multiplze Zeta Value (MZV) series $\zeta_d(\vec{s})$ is defined as

$$\zeta_d(\vec{s}) = \zeta_d(s_1, \ldots, s_d) = \sum_{1 \le k_1 < \cdots < k_d} k_1^{-s_1} \cdots k_d^{-s_d}.$$

We call d its depth and $wt(\vec{s}) := \sum_{i=1}^{d} s_i$ its weight.

Now we consider partial sums of these MZV series. More precisely, for $\vec{s} \in \mathbf{N}^d$ and a non-negative integer *n*, the *n*th partial sum of MZV series $H_d(\vec{s}; n)$ is defined by

$$H_d(\vec{s}; n) = H_d(s_1, \dots, s_d; n) = \sum_{1 \le k_1 < \dots < k_d \le n} k_1^{-s_1} \cdots k_d^{-s_d},$$
(1.1)

where $H_d(\vec{s}; r) = 0$ for r = 0, ..., d - 1. Then the following theorem was obtained by Wolstenholme ([3], p. 89):

THEOREM 1.1. For any prime number $p \ge 5$, $H_1(1; p - 1) \equiv 0 \pmod{p^2}$.

In [6] Zhao studied the *p*-divisibility of $H_d(\vec{s}; p-1)$ for general \vec{s} , which turned out to be closely related to the Bernoulli numbers B_t defined by $\frac{x}{e^{x}-1} = \sum_{t=0}^{\infty} \frac{B_t}{t!} x^t$. When (p,t) is an irregular pair, i.e., $p | B_t$ for even t with $2 \le t \le p-3$, $H_d(\vec{s}; p-1)$ is divisible by higher power of p than usually expected. As another generalization of Theorem 1.1, Bayat considered the p-divisibility of $H_1^*(s; p^a - 1)$ for a positive integer a in [1], where $H_1^*(s; n) = \sum_{\substack{1 \le k \le n \\ p \nmid k}} k^{-s}$ for any $n \in \mathbb{N}$ and we have $H_1^*(s; p-1) = H_1(s; p-1)$.

Received December 8, 2004; revised November 15, 2005; revised May 26, 2006