Токуо J. Матн. Vol. 29, No. 2, 2006

Reducible Curves on Rational Surfaces

Hideo KOJIMA and Takeshi TAKAHASHI

Niigata University and Nagaoka National College of Technology

(Communicated by S. Nakajima)

1. Introduction

Let k be an algebraically closed field of characteristic zero. Throughout the present article we fix k as the ground field. Let X be a smooth projective surface and B a reduced curve on X. Then we define the m-genus $P_m[B]$ and the Kodaira dimension $\kappa[B]$ as follows (cf. [4]): Let $f : V \to X$ be a birational morphism such that the strict transform D =f'(B) becomes a disjoint union of smooth curves. Then $P_m[B] := h^0(V, m(D + K_V))$ and $\kappa[B] := \kappa(D + K_V, V)$, where K_V is the canonical divisor on V and $\kappa(D + K_V, V)$ is the $(D + K_V)$ -dimension of V (cf. [1]). Note that $P_m[B] = \bar{P}_m(V - D)$ and $\kappa[B] = \bar{\kappa}(V - D)$, where $\bar{P}_m(V - D)$ (resp. $\bar{\kappa}(V - D)$) denotes the logarithmic m-genus (resp. the logarithmic Kodaira dimension) of V - D (cf. [1] and [11]).

Pairs (*X*, *B*) of smooth projective rational surfaces *X* and irreducible curves *B* on *X* were studied from the viewpoint of birational geometry by Iitaka [2, 5], Matsuda [9] and the others. In [3] and [4], Iitaka studied reducible curves *B* on smooth projective rational surfaces such that #(B) = 2, where #(B) is the number of irreducible components of *B*. In particular, he proved the following result.

THEOREM 1.1. ([4]) Let B be a reduced curve on a smooth projective rational surface X with $#(B) \le 2$. Then $\kappa[B] = -\infty$ if and only if $P_2[B] = 0$.

In the present article, by using the theory of open algebraic surfaces, we study reduced curves on smooth projective rational surfaces. In §3, we give a simple proof of Theorem 1.1 by using the structure theorems of open algebraic surfaces (cf. §2). In §4, we study the case where *B* consists of two rational curves and $\kappa[B] = 0$ or 1 and give a structure theorem of such a pair, which improves [4, Proposition 3]. In §5, we consider the relation of $P_m[B]$ and $\kappa[B]$ when $\#(B) \le 4$.

The authors would like to thank the referee for giving useful comments.

Received March 3, 2005; revised August 29, 2005

Mathematics Subject Classification (2000): Primary 14J26; Secondary 14E05.