By Nobushige KUROKAWA, Ryo SASAKI, and Hideki TANUMA

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ohokavama, Meguro-ku, Tokyo 152–0033 (Communicated by Shokichi IYANAGA, M. J. A., June 15, 1999)

1. Introduction. We define the "Laplacian" or the "adjacency matrix" of a category \mathcal{C} via

$$\Delta(\mathcal{C}) = \left(^{\#} \operatorname{Hom}_{\mathcal{C}}(X, Y)\right)_{X, Y \in \operatorname{Ob}(\mathcal{C})}$$

where $Ob(\mathcal{C})$ is the "set" (or "class") of objects, and # denotes the cardinality. This notion is borrowed from the graph theory (cf. Biggs [1]), since a category is a certain "oriented graph" satisfying the associative law for edges (morphisms).

We are especially interested in the most basic case where \mathcal{C} is consisting of abelian groups or modules. For convenience, when we are treating the category C consisting of finite abelian groups A_1, \ldots, A_n , we denote the Laplacian $\Delta(\mathcal{C})$ concretely as

$$\Delta(A_1,\ldots,A_n) = (^{\#}\operatorname{Hom}(A_i,A_i))$$

where i, j = 1, ..., n. More generally, for (left) Rmodules M_1, \ldots, M_n over a ring R, we simply write the associated Laplacian as

$$\Delta_R(M_1, \dots, M_n) = \left({}^{\#} \operatorname{Hom}_R(M_i, M_j) \right).$$

Naturally $\Delta(A_1, \dots, A_n) = \Delta_{\mathbf{Z}}(A_1, \dots, A_n).$

We hope to study the spectra (eigenvalues) Spect $\Delta(\mathcal{C})$ of $\Delta(\mathcal{C})$. In general we expect that $\Delta(\mathcal{C})$ behaves like the classical Laplacian appearing in the differential geometry. In particular, $\Delta(\mathcal{C})$ would be symmetric and semi-positive, and the spectra would be distributed as usual.

Here we restrict ourselves to the case of $\Delta(A_1,\ldots,A_n)$ and $\Delta_R(M_1,\ldots,M_n)$ as well as their behavior as $n \to \infty$. Main results are as follows. First:

Theorem 1. For finite abelian groups A_1, \ldots, A_n $A_n, \Delta(A_1, \ldots, A_n)$ is a symmetric matrix.

We conjecture that $\Delta(A_1, \ldots, A_n)$ is semipositive. (The case n = 2 is proved in [3].) The next result gives an affirmative answer for $\Delta(\mathbf{F}_p^{m_1},\ldots,\mathbf{F}_p^{m_n})$ where p is a prime.

Theorem 2. Let \mathbf{F}_q be a finite field of q elements. Then

$$\Delta_{\mathbf{F}_q}(\mathbf{F}_q^{m_1},\ldots,\mathbf{F}_q^{m_n}) = (q^{m_i m_j})$$

is a semi-positive matrix for integers $m_i \ge 0$.

Finally we examine the behavior of spectra as $n \to \infty$ in a simple situation.

Theorem 3. Let p_n be the n-th prime. Then the spectra $\lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \cdots \leq \lambda_n^{(n)}$ of $\Delta(\mathbf{Z}/p_1\mathbf{Z},\ldots,\mathbf{Z}/p_n\mathbf{Z})$ are all simple and located as $p_1 - 1 < \lambda_1^{(n)} < p_2 - 1 < \lambda_2^{(n)} < \dots < p_n - 1 < \lambda_n^{(n)}.$

In particular, $\Delta(\mathbf{Z}/p_1\mathbf{Z},\ldots,\mathbf{Z}/p_n\mathbf{Z})$ is a positive matrix. Moreover, for each fixed $m \geq 1$, we have

$$\lim_{n \to \infty} \lambda_m^{(n)} = p_m - 1.$$

We remark that the convergence is very slow. For example $\lim_{n \to \infty} \lambda_1^{(n)} = 1$, but $\lambda_1^{(100)} = 1.25467 \cdots$, $\lambda_1^{(1600)} = 1.23294\cdots$, and roughly

$$\lambda_1^{(n)} \approx 1 + \frac{1}{\log \log n}$$

as analyzed later.

It is well-known that spectra of Laplacians explain zeros and poles of zeta functions for Riemannian manifolds and graphs. Relations to categorical zeta functions in the direction of [2] will be treated at another occasion.

2. Symmetry. We prove Theorem 1. It is sufficient to prove the following

Lemma 1. Let A and B be finite abelian groups, then

$$^{\#}\operatorname{Hom}(A,B) = ^{\#}\operatorname{Hom}(B,A).$$

Proof. Let \hat{A} =Hom $(A, \mathbf{Q}/\mathbf{Z}), \hat{B}$ =Hom $(B, \mathbf{Q}/\mathbf{Z})$ be the dual abelian groups. (We describe abelian groups additively.) There is a natural homomorphism

$$\begin{array}{cccc} \varphi: & \operatorname{Hom}(A,B) & \longrightarrow & \operatorname{Hom}(\hat{B},\hat{A}) \\ & & & & & \\ \psi & & & & \\ f & & \longmapsto & \varphi(f) \end{array}$$

defined via

$$\varphi(f)(\chi) = \chi \circ f \quad \text{for } \chi \in \hat{B}.$$