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1. Introduction. We define the “Lapla-
cian” or the “adjacency matrix” of a category C via

∆(C) =
(
#HomC(X,Y )

)
X,Y ∈Ob(C)

where Ob(C) is the “set” (or “class”) of objects, and
# denotes the cardinality. This notion is borrowed
from the graph theory (cf. Biggs [1]), since a category
is a certain “oriented graph” satisfying the associa-
tive law for edges (morphisms).

We are especially interested in the most basic
case where C is consisting of abelian groups or mod-
ules. For convenience, when we are treating the cate-
gory C consisting of finite abelian groups A1, . . . , An,
we denote the Laplacian ∆(C) concretely as

∆(A1, . . . , An) =
(
#Hom(Ai, Aj)

)
where i, j = 1, . . . , n. More generally, for (left) R-
modules M1, . . . ,Mn over a ring R, we simply write
the associated Laplacian as

∆R(M1, . . . ,Mn) =
(
#HomR(Mi,Mj)

)
.

Naturally ∆(A1, . . . , An) = ∆Z(A1, . . . , An).

We hope to study the spectra (eigenvalues)
Spect∆(C) of ∆(C). In general we expect that ∆(C)
behaves like the classical Laplacian appearing in the
differential geometry. In particular, ∆(C) would be
symmetric and semi-positive, and the spectra would
be distributed as usual.

Here we restrict ourselves to the case of
∆(A1, . . . , An) and ∆R(M1, . . . ,Mn) as well as their
behavior as n → ∞. Main results are as follows.
First:

Theorem 1. For finite abelian groups A1, . . . ,
An, ∆(A1, . . . , An) is a symmetric matrix.

We conjecture that ∆(A1, . . . , An) is semi-
positive. (The case n = 2 is proved in [3].)
The next result gives an affirmative answer for
∆(Fm1

p , . . . ,Fmn
p ) where p is a prime.

Theorem 2. Let Fq be a finite field of q ele-
ments. Then

∆Fq
(Fm1

q , . . . ,Fmn
q ) = (qmimj )

is a semi-positive matrix for integers mi ≥ 0.
Finally we examine the behavior of spectra as

n → ∞ in a simple situation.
Theorem 3. Let pn be the n-th prime. Then

the spectra λ
(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n of

∆(Z/p1Z, . . . ,Z/pnZ) are all simple and located as

p1 − 1 < λ
(n)
1 < p2 − 1 < λ

(n)
2 < · · · < pn − 1 < λ(n)

n .

In particular, ∆(Z/p1Z, . . . ,Z/pnZ) is a pos-
itive matrix. Moreover, for each fixed m ≥ 1, we
have

lim
n→∞λ(n)

m = pm − 1.

We remark that the convergence is very slow.
For example lim

n→∞λ
(n)
1 = 1, but λ

(100)
1 = 1.25467 · · · ,

λ
(1600)
1 = 1.23294 · · · , and roughly

λ
(n)
1 ≈ 1 +

1
log log n

as analyzed later.
It is well-known that spectra of Laplacians ex-

plain zeros and poles of zeta functions for Rieman-
nian manifolds and graphs. Relations to categorical
zeta functions in the direction of [2] will be treated
at another occasion.

2. Symmetry. We prove Theorem 1. It is
sufficient to prove the following

Lemma 1. Let A and B be finite abelian
groups, then

#Hom(A,B) = #Hom(B,A).

Proof. Let Â=Hom(A,Q/Z), B̂=Hom(B,Q/Z)
be the dual abelian groups. (We describe abelian
groups additively.) There is a natural homomor-
phism

ϕ : Hom(A,B) −→ Hom(B̂, Â)

∈ ∈

f �−→ ϕ(f)

defined via

ϕ(f)(χ) = χ ◦ f for χ ∈ B̂.


