"Hasse principle" for $S L_{n}(D)$

By Hideo Wada
Department of Mathematics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554
(Communicated by Shokichi Iyanaga, m.J.A., May 12, 1999)

1. Notation and results. Extending the usage of language in Galois cohomology, T. Ono defined "Hasse principle" for any group G (cf. [2]). We know that the Hasse principle holds for $G=$ abelian, dihedral, quatenion, $P S L_{2}(\mathbf{Z}), P S L_{2}\left(\mathbf{F}_{p}\right)$ (cf. [2]), free groups ([3]), symmetric groups and alternating groups ([4]).
Let D be an Euclidean domain(for examples $D=\mathbf{Z}$, $D=\mathbf{F}_{p}$). Put $\varepsilon=(-1)^{n-1}$ and we define in $S L_{n}(D)$

$$
\begin{gathered}
S=\left(\begin{array}{ccccc}
0 & \ldots & \ldots & 0 & \varepsilon \\
1 & \ddots & & & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & 1 & 0
\end{array}\right) \\
T_{\mu}=\left(\begin{array}{cccccc}
1 & \mu & 0 & \ldots & 0 \\
0 & \ddots & 0 & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & 1
\end{array}\right), T=T_{1}
\end{gathered}
$$

Then $S L_{n}(\mathbf{Z})$ is generated by S and T (cf.[1]). Similarly using Eucledian algorithm we can prove that $S L_{n}(D)$ is generated by S and $\left\{T_{\mu} \mid \mu \in D\right\}$. Using this fact, T. Ono proved that $S L_{2}(D)$ enjoys the Hasse principle (unpublished). In this paper, we shall prove more generally the following

Theorem. For any natural number $n, S L_{n}(D)$ and $P S L_{n}(D)$ enjoy the Hasse principle.
M. Mazur [5] noticed that $f(x)$ is a cocycle iff $g(x)=f(x) x$ is an endomorphism of $G, f(x)$ is a local coboundary iff $g(x) \sim x$ (conjugate in G) for each $x \in G$ and $f(x)$ is a global coboundary iff $g(x)$ is an inner automorphism. Therefore "Hasse principle" is equivalent to say that "any endomorphism of G which satisfies $g(x) \sim x$ for each $x \in G$ must be an inner automorphism".
2. Proof of the theorem. Let $g(x)$ be an endomorphism which satisfies $g(x) \sim x$ for each $x \in$ G. We may assume $g(S)=S, g(T)=M^{-1} T M$
where

$$
\begin{gathered}
M=\left(\begin{array}{cccc}
a_{1} & a_{2} & \ldots & a_{n} \\
b_{1} & b_{2} & \ldots & b_{n} \\
\vdots & \vdots & & \vdots \\
g_{1} & g_{2} & \ldots & g_{n}
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{a} \\
\boldsymbol{b} \\
\vdots \\
\boldsymbol{g}
\end{array}\right) \\
M^{-1}=\left(\begin{array}{cc}
x_{1} & \\
x_{2} & \\
\vdots & * \\
x_{n} &
\end{array}\right)
\end{gathered}
$$

Then

$$
\begin{gathered}
g(T)=E+M^{-1} E_{12} M= \\
\left(\begin{array}{cccc}
1+x_{1} b_{1} & x_{1} b_{2} & \ldots & x_{1} b_{n} \\
x_{2} b_{1} & 1+x_{2} b_{2} & \ldots & x_{2} b_{n} \\
\vdots & \vdots & & \vdots \\
x_{n} b_{1} & x_{n} b_{2} & \ldots & 1+x_{n} b_{n}
\end{array}\right)
\end{gathered}
$$

where $E_{i j}$ is the matrix unit whose $i j$-element is 1 and the other elements are 0 . Put

$$
\tilde{M}=\left(\begin{array}{c}
\boldsymbol{v}_{1} \tag{1}\\
\boldsymbol{b} \\
\boldsymbol{v}_{3} \\
\boldsymbol{v}_{4} \\
\vdots \\
\boldsymbol{v}_{n}
\end{array}\right)=
$$

$$
\left(\begin{array}{cccccc}
b_{2} & b_{3} & b_{4} & \ldots & b_{n} & \varepsilon b_{1} \\
b_{1} & b_{2} & b_{3} & \ldots & b_{n-1} & b_{n} \\
\varepsilon b_{n} & b_{1} & b_{2} & \ldots & b_{n-2} & b_{n-1} \\
\varepsilon b_{n-1} & \varepsilon b_{n} & b_{1} & \ldots & b_{n-3} & b_{n-2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
\varepsilon b_{3} & \varepsilon b_{4} & \varepsilon b_{5} & \ldots & b_{1} & b_{2}
\end{array}\right) .
$$

Then after a little calculation we have

$$
\begin{gathered}
|x E-S g(T)|= \\
x^{n}-\sum_{i=1}^{n-1}\left(x_{1} b_{i+1}+x_{2} b_{i+2}+\cdots+x_{n-i} b_{n}\right. \\
\left.+\varepsilon x_{n-i+1} b_{1}+\cdots+\varepsilon x_{n} b_{i}\right) x^{n-i}-\varepsilon=
\end{gathered}
$$

