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1. Introduction. The aim in this paper is
to give implements applicable to valuing “default
swap”, a kind of financial commodity called credit
derivative. Davis and Marvoidis [2], under the as-
sumption that the hazard rate is a Gaussian and
independent of the riskless spot rate, evaluated the
value of the swap by using forward measure approach
and the integral approximation. The Gaussian haz-
ard rate model has, however, an undesirable property
that it may become negative, hence, the probability
of not-default at some time may be over one. So
the author is motivated by the idea that CIR term
structure model, for example, must be effective for
modeling hazard rate.

The main result concerns the formula which
computes the expectation of the special functional
of the hazard rate, under the assumption that the
hazard rate process follows the so-called affine type
model including CIR model. It is proved by using
Itô formula and usual calculus.

2. The result. Let (Ω,F , P ) be a probabil-
ity space.

Denote by B a one dimensional standard Brow-
nian motion on the above space.

Theorem 1. Let T ∈ (0,∞).
Let ht satisfy the following stochastic differential

equation (called the affine-type model) on [0, T ].

dht = m(ht, t)dt+ σ(ht, t)dBt, h0 > 0,(1)

where m and σ are deterministic functions of the
following form:

m(x, t)=m1(t)+m2(t)x, σ(x, t)2 =σ1(t)+σ2(t)x

for deterministic functions mi(t), σi(t) (i = 1, 2)
with σ2 6= 0 and

m1(t)−m2(t)σ1(t)σ2(t)−1 ≥ 0, t ∈ [0, T ].(2)

Let β be a nonnegative real number and κ(t) be
a strictly positive deterministic continuously differ-
entiable function.
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Then the following equality holds: for t ∈ [0, T ],

E[exp(−
∫ t

0

κ(s)hsds− βht)ht] = Φ(t)
G(t) + J(t)h0

K(t)

where

Φ(t) = exp(−a(t)− b(t)h0),

G(t) = −1
2
σ1(t)b(t)2 + (b(t)− β)m1(t),

J(t) = −1
2
σ2(t)b(t)2 +m2(t)b(t)+ κ(t),

K(t) = κ(t) + βm2(t)−
1
2
β2σ2(t),

and a(t), b(t) are solutions to the following differen-
tial equations:

b′(t) = − 1
2σ2(t)b(t)2 +m2(t)b(t) + κ(t)

a′(t) = − 1
2σ1(t)b(t)2 +m1(t)b(t)

a(0) = 0, b(0) = β.

(3)

Remark. The condition (2) guarantees the ex-
istence of a solution h to the SDE (1) with ht ≥
−σ1(t)σ2(t)−1 for all t ∈ [0, T ]. (See Duffie [3].) In
particular, by assuming σ1 = 0, the positive solution
is achieved.

To begin with, we state the following crucial
proposition without proof.

Proposition 2. Assume ht satisfies (1) in
Theorem 1.

For any non-negative β and strictly positive
function κ(t), we have

E[exp(−βht −
∫ t

0

κ(s)hsds)]

= exp(−a(t)− b(t)h0),

where a(t) and b(t) are solutions of (3).
It goes without saying that if a(t) and b(t) have

an explicit form as a function of β (see Example 3),
the result in the theorem can be easily achieved by
differentiating exp(−a(t)−b(t)h0) in β. Now we give
the proof of Theorem 1 applicable to other general
cases.

Proof . Let a and b be solutions to (3). Now


