Exit probability of two-dimensional random walk from the quadrant

By Michio Shimura

Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274–8510 (Communicated by Heisuke HIRONAKA, M. J. A., March 12, 1999)

1. Introduction and preliminaries. Let

$$Z_0 = 0, Z_1 = (X_1, Y_1), Z_2 = (X_2, Y_2), \dots$$

be a random walk in the two-dimensional integer lattice Z^2 . By a random walk we mean a stochastic sequence with stationary independent increments starting at the origin. Throughout the paper we impose on the random walk the following assumptions.

Assumption 1.1. For every $\boldsymbol{\theta} = (\theta_1, \theta_2)$ in \boldsymbol{R}^2 ,

$$\lambda(\boldsymbol{\theta}) := E(e^{\boldsymbol{\theta} \cdot Z_1}) < \infty,$$

where $\boldsymbol{\theta} \cdot \boldsymbol{z}$ denotes the inner product in \mathbf{R}^2 . Let D_i (i = 1, 2, 3, 4) be the *i* th quadrant in \mathbf{R}^2 , that is,

$$D_1 = \{(x, y) \in \mathbf{R}^2 | x > 0, y > 0\},\$$

$$D_2 = \{(x, y) \in \mathbf{R}^2 | x < 0, y > 0\},\$$

$$D_3 = \{(x, y) \in \mathbf{R}^2 | x < 0, y < 0\},\$$

and

$$D_4 = \{(x, y) \in \mathbf{R}^2 | x > 0, y < 0\}$$

Assumption 1.2. $\mu = E(Z_1) \in D_1$, and $P(Z_n \in D_4) > 0$ for some positive integer n.

Assumption 1.3. The y-coordinate of the random walk is left-continuous, that is, $P(Y_1 \in \{-1, 0, 1, 2, ...\}) = 1.$

Let a and b be positive integers. In this paper we will take a arbitrarily fixed, so we omit a in many of our statements and notations. Set

$$T_b := \inf\{n \ge 0 | (a, b) + Z_n \notin D_1\}$$

 $(\inf \emptyset = \infty)$. Define

r

$$D_4^* := \{(x, y) | x > 0, y \le 0\}$$

and

$$_{b} := P(T_{b} < \infty, (a, b) + Z_{T_{b}} \in D_{4}^{*}).$$

Since $Z_n \sim \mu n \ a.s. \ (n \to \infty)$ by the strong law of large numbers, we have $r_b \to 0 \ (b \to \infty)$ from the first condition of Assumption 1.2. The purpose of this paper is to study the decay rate of r_b to 0. Our problem is a two-dimensional extension of the asymptotic

analysis of *ruin probability* for one dimensional random walk with positive drift.

Let Θ denote the contour of the moment generating function $\lambda(\boldsymbol{\theta})$ at the level 1, that is, $\Theta = \{\boldsymbol{\theta} \in \mathbf{R}^2 | \lambda(\boldsymbol{\theta}) = 1\}$. It is shown from Assumptions 1.1 and 1.2 the following lemma. (See, e.g., Ney *et al.* [4]).

Lemma 1.1. Θ is a smooth convex curve. Moreover, it intersects the θ_2 -axis at two points; the one is the origin and the other is $\tilde{\boldsymbol{\theta}} = (0, \tilde{\theta}_2)$ with $\tilde{\theta}_2 < 0$.

Note that, if $\boldsymbol{\theta} \in \Theta$, then $\exp(\boldsymbol{\theta} \cdot \boldsymbol{z})$ is a harmonic function of the random walk, namely, it satisfies

$$E(\exp\{\boldsymbol{\theta} \cdot (Z_1 + \boldsymbol{z})\}) = \exp(\boldsymbol{\theta} \cdot \boldsymbol{z}) \text{ for all } \boldsymbol{z} \in \boldsymbol{R}^2.$$

From now on we always take $\boldsymbol{\theta}$ as an element of $\boldsymbol{\Theta}$. We will not indicate it in our statements. Let $F(\boldsymbol{z}) := P(Z_1 = \boldsymbol{z})$ and introduce a new probability function on \boldsymbol{Z}^2 by

$$F^{(\boldsymbol{\theta})}(\boldsymbol{z}) := \exp(\boldsymbol{\theta} \cdot \boldsymbol{z})F(\boldsymbol{z}).$$

By $P^{(\theta)}$ we denote the probability measure of the random walk with the one-step probability function $F^{(\theta)}(z)$. By elementary observation we get the following formulas and lemma:

(1.1)
$$\boldsymbol{\mu}^{(\boldsymbol{\theta})} := E^{(\boldsymbol{\theta})}(Z_1) = \nabla \lambda(\boldsymbol{\theta})$$

Lemma 1.2. The following two statements are equivalent:

(i)
$$P^{(\theta)}(T_b < \infty) = 1$$
. (ii) $\mu^{(\theta)} \notin D_1$.
Put

(1.2)
$$\eta_b(\boldsymbol{\theta}) := 1(T_b < \infty, (a, b) + Z_{T_b} \in D_4^*) \times \exp(-\boldsymbol{\theta} \cdot Z_{T_b}),$$

where 1(A) is the indicator function of an event A, that is, 1(A) = 1 if A occurs and 1(A) = 0 otherwise. Then, as is shown in Lehtonen et al. [2], we have

(1.3)
$$r_b = E^{(\boldsymbol{\theta})}(\eta_b(\boldsymbol{\theta}))$$

As will be discussed in §§ 2 and 3, our key observation on the problem is the following: 'To choose the θ from Θ which is most preferable to get an asymptotic formula for r_b ($b \to \infty$) via (1.3)'. The obser-