Exit probability of two-dimensional random walk from the quadrant

By Michio Shimura
Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510
(Communicated by Heisuke Hironaka, m. J. a., March 12, 1999)

1. Introduction and preliminaries. Let

$$
Z_{0}=0, Z_{1}=\left(X_{1}, Y_{1}\right), Z_{2}=\left(X_{2}, Y_{2}\right), \ldots
$$

be a random walk in the two-dimensional integer lattice \boldsymbol{Z}^{2}. By a random walk we mean a stochastic sequence with stationary independent increments starting at the origin. Throughout the paper we impose on the random walk the following assumptions.

Assumption 1.1. For every $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}\right)$ in \boldsymbol{R}^{2},

$$
\lambda(\boldsymbol{\theta}):=E\left(e^{\boldsymbol{\theta} \cdot Z_{1}}\right)<\infty
$$

where $\boldsymbol{\theta} \cdot \boldsymbol{z}$ denotes the inner product in \boldsymbol{R}^{2}.
Let $D_{i}(i=1,2,3,4)$ be the i th quadrant in \boldsymbol{R}^{2}, that is,

$$
\begin{aligned}
D_{1} & =\left\{(x, y) \in \boldsymbol{R}^{2} \mid x>0, y>0\right\}, \\
D_{2} & =\left\{(x, y) \in \boldsymbol{R}^{2} \mid x<0, y>0\right\}, \\
D_{3} & =\left\{(x, y) \in \boldsymbol{R}^{2} \mid x<0, y<0\right\},
\end{aligned}
$$

and

$$
D_{4}=\left\{(x, y) \in \boldsymbol{R}^{2} \mid x>0, y<0\right\} .
$$

Assumption 1.2. $\boldsymbol{\mu}=E\left(Z_{1}\right) \in D_{1}$, and $P\left(Z_{n} \in D_{4}\right)>0$ for some positive integer n.

Assumption 1.3. The y-coordinate of the random walk is left-continuous, that is, $P\left(Y_{1} \in\{-1,0,1,2, \ldots\}\right)=1$.

Let a and b be positive integers. In this paper we will take a arbitrarily fixed, so we omit a in many of our statements and notations. Set

$$
T_{b}:=\inf \left\{n \geq 0 \mid(a, b)+Z_{n} \notin D_{1}\right\}
$$

(inf $\emptyset=\infty)$. Define

$$
D_{4}^{*}:=\{(x, y) \mid x>0, y \leq 0\}
$$

and

$$
r_{b}:=P\left(T_{b}<\infty,(a, b)+Z_{T_{b}} \in D_{4}^{*}\right)
$$

Since $Z_{n} \sim \boldsymbol{\mu} n$ a.s. $(n \rightarrow \infty)$ by the strong law of large numbers, we have $r_{b} \rightarrow 0(b \rightarrow \infty)$ from the first condition of Assumption 1.2. The purpose of this paper is to study the decay rate of r_{b} to 0 . Our problem is a two-dimensional extension of the asymptotic
analysis of ruin probability for one dimensional random walk with positive drift.

Let Θ denote the contour of the moment generating function $\lambda(\boldsymbol{\theta})$ at the level 1 , that is, $\Theta=\{\boldsymbol{\theta} \in$ $\left.\boldsymbol{R}^{2} \mid \lambda(\boldsymbol{\theta})=1\right\}$. It is shown from Assumptions 1.1 and 1.2 the following lemma. (See, e.g., Ney et al. [4]).

Lemma 1.1. Θ is a smooth convex curve. Moreover, it intersects the θ_{2}-axis at two points; the one is the origin and the other is $\widetilde{\boldsymbol{\theta}}=\left(0, \widetilde{\theta}_{2}\right)$ with $\widetilde{\theta}_{2}<0$.

Note that, if $\boldsymbol{\theta} \in \Theta$, then $\exp (\boldsymbol{\theta} \cdot \boldsymbol{z})$ is a harmonic function of the random walk, namely, it satisfies

$$
E\left(\exp \left\{\boldsymbol{\theta} \cdot\left(Z_{1}+\boldsymbol{z}\right)\right\}\right)=\exp (\boldsymbol{\theta} \cdot \boldsymbol{z}) \quad \text { for all } \boldsymbol{z} \in \boldsymbol{R}^{2}
$$

From now on we always take $\boldsymbol{\theta}$ as an element of Θ. We will not indicate it in our statements. Let $F(\boldsymbol{z}):=P\left(Z_{1}=\boldsymbol{z}\right)$ and introduce a new probability function on \boldsymbol{Z}^{2} by

$$
F^{(\boldsymbol{\theta})}(\boldsymbol{z}):=\exp (\boldsymbol{\theta} \cdot z) F(\boldsymbol{z})
$$

By $P^{(\boldsymbol{\theta})}$ we denote the probability measure of the random walk with the one-step probability function $F^{(\boldsymbol{\theta})}(\boldsymbol{z})$. By elementary observation we get the following formulas and lemma:

$$
\begin{equation*}
\boldsymbol{\mu}^{(\boldsymbol{\theta})}:=E^{(\boldsymbol{\theta})}\left(Z_{1}\right)=\nabla \lambda(\boldsymbol{\theta}) \tag{1.1}
\end{equation*}
$$

Lemma 1.2. The following two statements are equivalent:
(i)

Put
(1.2) $\eta_{b}(\boldsymbol{\theta}):=1\left(T_{b}<\infty,(a, b)+Z_{T_{b}} \in D_{4}^{*}\right) \times$ $\exp \left(-\boldsymbol{\theta} \cdot Z_{T_{b}}\right)$,
where $1(A)$ is the indicator function of an event A, that is, $1(A)=1$ if A occurs and $1(A)=0$ otherwise. Then, as is shown in Lehtonen et al. [2], we have

$$
\begin{equation*}
r_{b}=E^{(\boldsymbol{\theta})}\left(\eta_{b}(\boldsymbol{\theta})\right) . \tag{1.3}
\end{equation*}
$$

As will be discussed in $\S \S 2$ and 3 , our key observation on the problem is the following: 'To choose the $\boldsymbol{\theta}$ from Θ which is most preferable to get an asymptotic formula for $r_{b}(b \rightarrow \infty)$ via (1.3)'. The obser-

