Modified complexity and *-Sturmian word

By Izumi Nakashima, ${ }^{*)}$ Jun-ichi Tamura, ${ }^{* *)}$ and Shin-ichi Yasutomi**)

We give analogies of the complexity $p(n)$ and Sturmian words which are called the $*$-complexity $p_{*}(n)$ and $*$-Sturmian words. We announce theorems about $*$-Sturmian words in this paper. The proofs and details will be published elsewhere. We consider words over an alphabet $L=\{0,1\}$. Let L^{n} be the set of all words of length $n \geq 0, L^{0}=\{\lambda\}, \lambda$ is the empty word. Let L^{*} be the set of all finite words and $L^{\boldsymbol{N}}$ (resp. $L^{-\boldsymbol{N}}$) be the set of right-sided (resp. left-sided) infinite words. A two-sided infinite words $W \in L^{Z}$ is defined to be a map $W: \boldsymbol{Z} \rightarrow L$. We identify two words $V, W \in L^{\boldsymbol{Z}}$ if $V(x+y)=W(x)$ for all $x \in \boldsymbol{Z}$ for some fixed $y \in \boldsymbol{Z}$. We put $L^{\wedge}=L^{*} \cup$ $L^{\boldsymbol{N}} \cup L^{-N} \cup L^{Z}$. We denote the set of all subwords of W by $D(W)$. We put $D(n ; W):=D(W) \cap L^{n}$ $(n \geq 0)$. The complexity of a word W is a function defined by

$$
p(n)=p(n ; W):=\sharp D(n ; W) .
$$

A $*$-subword w of W is a word $w \in D(W)$ which occurs infinitely many times in W. We put $D_{*}(n ; W):=D_{*}(W) \cap L^{n}$, where $D_{*}(W)$ is the set of $*$-subwords of W. We define $*$-complexity

$$
p_{*}(n)=p_{*}(n ; W):=\sharp D_{*}(n ; W) .
$$

A Sturmian word is defined to be a word $W \in L^{\boldsymbol{N}} \cup$ $L^{-N} \cup L^{Z}$ satisfying

$$
|\xi(A)-\xi(B)| \leq 1
$$

for any $A, B \in D(n ; W)$ for all $n \geq 0$, where $\xi(w)$ denotes the number of occurrences of a symbol 1 appearing in a word $w \in L^{*}$, cf. [2]. We define a *-Sturmian word to be a word $W \in L^{N} \cup L^{-N} \cup L^{Z}$ satisfying

$$
|\xi(A)-\xi(B)| \leq 1
$$

for any $A, B \in D_{*}(n ; W)$ for all $n \geq 0$. Let $\sigma(n ; W)=\max _{A \in D(n ; W)} \xi(A)$ and $\sigma^{\prime}(n ; W)=$
*) General Education, Gifu National College of Technology, 2236-2 Kamimakuwa, Shinsei-cho, Motosu-gun, Gifu 501-0495.
**) Faculty of General Education, International Junior College, 4-15-1 Ekoda, Nakano-ku, Tokyo 165-0022.
***) General Education, Suzuka National College of Technology, Shiroko, Suzuka, Mie 510-0294.
$\min _{A \in D(n ; W)} \xi(A)$.
Theorem 1 (Morse and Hedlund [2]). If W is a Sturmian word, then $p(n ; W) \leq n+1$, and there is the density $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n, W)}{n}=\lim _{n \rightarrow \infty} \frac{\sigma^{\prime}(n, W)}{n}$.

We can classify one-sided or two-sided infinite Sturmian words as follows:
(Type I) α is irrational,
(Type II) α is rational and W is purely periodic,
(Type III) α is rational and W is not purely periodic.
It is known that each case can occur. The words of Type III will be referred to as skew Sturmian words. Let $0 \leq \alpha \leq 1$ and β be real numbers. We define $G(n, \alpha, \beta)=\lfloor(n+1) \alpha+\beta\rfloor-\lfloor n \alpha+\beta\rfloor$ and $G^{\prime}(n, \alpha, \beta)=\lceil(n+1) \alpha+\beta\rceil-\lceil n \alpha+\beta\rceil$, where $\lfloor x\rfloor$ is the greatest integer which does not exceed x and $\lceil x\rceil$ is the least integer which is not smaller than x. A word $G(\alpha, \beta) \in L^{\boldsymbol{N}}$ is defined by

$$
G(\alpha, \beta)=G(0, \alpha, \beta) G(1, \alpha, \beta) \cdots G(n, \alpha, \beta) \cdots
$$

$G^{\prime}(\alpha, \beta)$ is defined similarly by using $G^{\prime}(n, \alpha, \beta)$. We set $G(\alpha)=G(\alpha, 0), G^{\prime}(\alpha)=G^{\prime}(\alpha, 0), G(n, \alpha)=$ $G(n, \alpha, 0)$ and $G^{\prime}(n, \alpha)=G^{\prime}(n, \alpha, 0)$.

Theorem 2 (Morse and Hedlund [2]). If α is irrational (resp. rational), then $G(\alpha, \beta)$ and $G^{\prime}(\alpha, \beta)$ are Sturmian words of Type I (resp. TypeII). Conversely, if $W \in L^{N}$ is a Sturmian word of type I with density $\alpha=\lim _{n \rightarrow \infty} \frac{\sigma(n, W)}{n}$, there exists a real number β such that $W=G(\alpha, \beta)$ or $W=G^{\prime}(\alpha, \beta)$.

For $A, B \in L^{*}$ we denote by $\{A, B\}^{*}$ the set

$$
\{A, B\}^{*}:=\left\{w_{1} \cdots w_{n} ; w_{i}=A \text { or } B n \geq 0\right\}
$$

We say a word $W \in\{a, b\}^{*}$ is strictly over $\{a, b\}$ if both a and b eventually occur in W. w^{*} (resp. ${ }^{*} w$) $\left(\lambda \neq w \in L^{*}\right)$ denote the words $w^{*}:=w w w \cdots \in$ $L^{\boldsymbol{N}}$ (resp. $\left.{ }^{*} w:=\cdots w w w \in L^{-\boldsymbol{N}}\right), w^{n}(n \in \boldsymbol{N} \cup$ $\left.\{0\}, w \in L^{*}\right)$ is the word $w^{n}:=v_{1} v_{2} \cdots v_{n}\left(v_{i}=w\right)$. We mean by ${ }^{*} v w\left(\right.$ resp. $\left.v w^{*}\right)$ the word $\left({ }^{*} v\right) w$ (resp. $\left.v\left(w^{*}\right)\right)$.

Theorem $\mathbf{3}$ (Morse and Hedlund [2]). Let $W \in L^{N}$ be a purely periodic Sturmian word with

