Milnor numbers and classes of local complete intersections

By Jean-Paul BRASSELET,*) Daniel LEHMANN,**) José SEADE,***) and Tatsuo SUWA****)

(Communicated by Heisuke HIRONAKA, M.J.A., Dec. 13, 1999)

1. Introduction. Let V be an *n*-dimensional compact complex subvariety of a complex manifold M. When V is non-singular, the Chern classes of the complex tangent bundle TV are well-defined cohomology classes in $H^*(V; \mathbf{Z})$. We denote by $c_*(V)$ their image by the Poincaré isomorphism

$$P_V: H^{2(n-i)}(V; \mathbf{Z}) \xrightarrow{\frown [V]} H_{2i}(V; \mathbf{Z}),$$

cap-product by the fundamental class [V] of V. When V is singular there is no more Chern cohomology classes, but there are several theories generalizing homology classes $c_*(V)$. For instance, the Chern-Schwartz-MacPherson classes $c_*^{SM}(V)$ ([16], [17], [10], [3]) and the Fulton-Johnson classes $c_*^{FJ}(V)$ [5] are two different theories which coincide with $c_*(V)$ when V is non-singular. Our main purpose is to compare the Chern-Schwartz-MacPherson and the Fulton-Johnson classes when V is a local complete intersection. In this paper, we give a presentation of the main results; the complete proofs will be published elsewhere (see [4]).

On one hand, M. H. Schwartz defined actually classes in $H^*(M, M - V; \mathbf{Z})$ ([16], 1965). Let us denote by *m* the complex dimension of *M*. It is proved in [3](1979) that Schwartz classes are mapped by the Alexander duality

 $H^{2(m-i)}(M, M-V; \mathbf{Z}) \longrightarrow H_{2i}(V; \mathbf{Z})$

onto the classes defined by MacPherson ([10], 1974).

We restrict ourselves to the case of a local complete intersection V defined by a holomorphic section of a vector bundle. We consider a holomorphic vector bundle $E \to M$ of rank k = m - n, and a holomorphic section s generically transverse to the zero section, such that V is the zero set $s^{-1}(0)$. In this case, the virtual classes of V are defined in [4] as the Chern classes $c_{vir}^*(V) \in H^*(V; \mathbb{Z})$ of the "virtual tangent bundle" $[TM - E]|_V$ (in the complex K-theory $\tilde{K}(V)$). The virtual classes $c_{vir}^*(V)$ coincide with the usual Chern classes if V is non-singular and their images by the Poincaré duality (no more an isomorphism), denoted by $c_*^{vir}(V)$, coincide with the Fulton-Johnson classes $c_*^{FJ}(V)$.

In order to compare the Schwartz-MacPherson and the Fulton-Johnson classes of a local complete intersection, we have to study the difference $c_*^{vir}(V) - c_*^{SM}(V)$. This difference localizes near the singular part $\operatorname{Sing}(V)$ of V: more precisely, if we denote by $(S_{\alpha})_{\alpha}$ the family of connected components of $\operatorname{Sing}(V)$, there are well defined elements $\mu_*(V, S_{\alpha})$ in $H_*(S_{\alpha}; \mathbf{Z})$, called "the (homological) Milnor classes" of V at S_{α} , such that we get the

Theorem A. We have,

$$c_*^{vir}(V) - c_*^{SM}(V) = (-1)^n \sum_{\alpha} (i_{\alpha})_* (\mu_*(V, S_{\alpha})),$$

where $(i_{\alpha})_* : H_*(S_{\alpha}) \to H_*(V)$ denotes the natural map arising from the inclusion $S_{\alpha} \subset V$.

The Milnor number is well defined by Milnor [11], for hypersurfaces with isolated singular points, by Hamm [7] and Lê [8] for local complete intersections still with isolated singular points, and by Parusiński [12] for hypersurfaces with any compact singular set. The following theorem justifies the terminology "Milnor class" that we use.

Theorem B. $\mu_0(V, S_\alpha)$ is equal to the Milnor number of V at S_α in $H_0(S_\alpha) \cong \mathbb{Z}$, in all situations where this number has been already defined.

Such a theory for Milnor classes in homology has also been suggested by Yokura [21], and given in the case of complex compact hypersurfaces by Aluffi [1] and Parusiński-Pragacz [14].

For $r \geq 1$, we explain how to compute the Milnor class $\mu_{r-1}(V, S_{\alpha})$ by means of an *r*-frame $F^{(r)}$ defined on the regular part V_0 of *V* near (but off) S_{α} , as the difference (up to sign) of two classes of $F^{(r)}$ at S_{α} , the so-called "Schwartz class" and the "virtual class" (Theorems C and D).

^{*)} Institut de Mathématiques de Luminy, UPR 9016 CNRS, Campus de Luminy - Case 907, 13288 Marseille Cedex 9, France.

^{**)} Département des Sciences Mathématiques, Université de Montpellier II, 34095 Montpellier Cedex 5, France.

^{***)} Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, México 04510 D.F., México.

^{****)} Department of Mathematics, Hokkaido University, Kita 10-jo, Nishi-8 chome, Kita-ku, Sapporo 060-0810.