A note on quadratic fields in which a fixed prime number splits completely. III

By Humio Ichimura

Department of Mathematics, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027
(Communicated by Shokichi Iyanaga, m. J. A., Nov. 12, 1999)

1. Introduction. Let p be a fixed prime number and $M(p)^{+}$the set of all real quadratic fields in which p splits. For a quadratic field $K \in M(p)^{+}$, denote by $\delta_{p}^{+}(K)$ the order of the ideal class of K containing a prime ideal of K over p. Here, an ideal class is the one in the usual sense. We are concerned with the image of the map

$$
\delta_{p}^{+}: M(p)^{+} \longrightarrow \boldsymbol{N}, \quad K \rightarrow \delta_{p}^{+}(K)
$$

In the previous note [4], we showed that the image $\operatorname{Im} \delta_{p}^{+}$of δ_{p}^{+}contains 2^{n} for all $n \geq 0$ and any p. The purpose of this note is to show the following:

Theorem. Assume that the abc conjecture holds. (i) Then, the complement $\boldsymbol{N} \backslash \operatorname{Im} \delta_{p}^{+}$is a finite set for any prime number p. (ii) Further, $\operatorname{Im} \delta_{p}^{+}$ coincides with \boldsymbol{N} for infinitely many p.

The abc conjecture predicts that for any $\eta>0$, there exists a positive constant $C=C_{\eta}$ depending only on η with which the inequality

$$
\begin{equation*}
\max (|a|,|b|,|c|)<C\left(\prod_{\ell \mid a b c} \ell\right)^{1+\eta} \tag{1}
\end{equation*}
$$

holds for all nonzero integers a, b, c with $a+b=c$ and $(a, b, c)=1$. Here, in the RHS of (1), ℓ runs over the prime numbers dividing $a b c$. For more on the conjecture, confer Vojta [6, Chapter 5].
2. Lemma. Let $d(>1)$ be a square free integer and $m(>1)$ a natural number. Let (u, v) be an integral solution of the diophantine equation

$$
\begin{equation*}
X^{2}-d Y^{2}= \pm 4 m \tag{2}
\end{equation*}
$$

We say that (u, v) is a trivial solution when $m=n^{2}$ is a square and $n|u, n| v$.

Lemma. Let $d(>1)$ be a square free integer. Let $\epsilon=(s+t \sqrt{d}) / 2$ be a nontrivial unit of the real quadratic field $K=\boldsymbol{Q}(\sqrt{d})$ with $\epsilon>1$. For a natural number $m(>1)$, if the equation (2) has a nontrivial integral solution, then we have

[^0]\[

m \geq $$
\begin{cases}s / t^{2}, & \text { for } N(\epsilon)=-1 \\ (s-2) / t^{2}, & \text { for } N(\epsilon)=1\end{cases}
$$
\]

Here, $N(*)$ denotes the norm map.
This lemma was proved in Ankeny, Chowla and Hasse [1] and Hasse [2] when m is not a square. For the general case, see the author [3], and also Yokoi [8], Mollin [5].
3. Proof of Theorem. For a natural number n, we put $K=K_{(p, n)}=\boldsymbol{Q}\left(\sqrt{p^{2 n}+4}\right)$. As is easily seen, $p^{2 n}+4$ is not a square. We see that

$$
\epsilon=\frac{1}{2}\left(p^{n}+\sqrt{p^{2 n}+4}\right)
$$

is a nontrivial unit of the real quadratic field K with $N(\epsilon)=-1$.

First, we show the assertion (i) of the Theorem for the case $p \neq 2$. Let n be a natural number and $K=K_{(p, n)}$. We see that p splits in K, and let \mathfrak{P} be a prime ideal of K over p. Let n_{0} be the order of the ideal class $[\mathfrak{P}]$ of K containing \mathfrak{P}. We put $\alpha=1-\epsilon$. We have $N(\alpha)=-p^{n}$ and $\operatorname{Tr}(\alpha)=2-p^{n}$, where $\operatorname{Tr}(*)$ is the trace map. In particular,

$$
\left(\alpha, \alpha^{\prime}\right) \supseteq\left(p^{n}, 2-p^{n}\right)=1
$$

as $p \neq 2$. Here, α^{\prime} is the conjugate of α. Therefore, we obtain

$$
\begin{equation*}
(\alpha)=\mathfrak{P}^{n} \tag{3}
\end{equation*}
$$

and hence $n_{0} \mid n$. We show, under the abc conjecture, that $n_{0}=n$ when n is sufficiently large.

Write $p^{2 n}+4=f^{2} d$ with d square free. Applying the inequality (1) for $\left(p^{2 n}+4\right)-p^{2 n}=4$, we see that

$$
f^{2} d<c_{1}\left(2 p \prod_{\ell \mid p^{2 n}+4} \ell\right)^{1+\eta} \leq c_{1}(2 p f d)^{1+\eta}
$$

with $\eta=1 / 100$ (say). Here, c_{1} is a constant depending only on η, and ℓ runs over the prime numbers dividing $p^{2 n}+4$. From this, we obtain

$$
f^{1-\eta}<c_{2} p^{1+\eta} d^{\eta}=c_{2} p^{1+\eta}\left(\frac{p^{2 n}+4}{f^{2}}\right)^{\eta}
$$

[^0]: Partially supported by Grant-in-Aid for Scientific Research (C), (No. 11640041), the Ministry of Education, Science, Sports and Culture of Japan.

