A Thermodynamic formalism for one dimensional cellular automata

By Takao Namiki
Department of Mathematics, Hokkaido University, Kita 10-jo, Nishi 8-chome,
Kita-ku, Sapporo, Hokkaido 060-0810

(Communicated by Heisuke Hironaka, m.j.a., Feb. 12, 1999)

1. Introduction. The topological dynamics on the product space of a finite set $\left(S^{\mathbf{Z}}, \tau\right)$ is called one dimensional cellular automata (CA) if there exists a finite subset $\Lambda \subset \mathbf{Z}$ and a local map $f: S^{\Lambda} \mapsto S$ which satisfy $(\tau x)_{i}=f\left(x_{i+j} ; j \in \Lambda\right)$ for all $x \in S^{\mathbf{Z}}$. Since its transient dynamics show various phenomena, the orbit structure is too much complicated to treat using typical method of the dynamical systems [2].

Let (X, σ) be the full shift over the symbol S. The dynamical zeta function with potential function $V \in B V(X)$ is defined as follows [1]:

$$
\begin{aligned}
\zeta(z, V) & =\exp \left(\sum_{k>0} \frac{z^{k}}{k} Z_{k}(V)\right) \\
Z_{k}(V) & =\sum_{x \in \operatorname{Fix}\left(X, \sigma^{k}\right)} e^{-S_{k} V(x)}
\end{aligned}
$$

where $S_{k} V(x)=V(x)+V(\sigma x)+\cdots+V\left(\sigma^{k-1} x\right)$ and $\operatorname{Fix}\left(X, \sigma^{k}\right)=\left\{x \in X ; \sigma^{k} x=x\right\}$.

Suppose that the potential function depends only one site x_{0}, i.e. $V(x)=V\left(x_{0}\right)$ for all $x=$ $\left\{x_{i}\right\}_{i \in \mathbf{Z}}$, then the thermodynamical limit

$$
P\left(V_{n}\right)=\lim _{k \rightarrow \infty} \frac{1}{k} \log Z_{k}\left(V_{n}\right), V_{n}(x)=V\left(\tau^{n} x\right)
$$

exists for each n since $V_{n}(x)$ depends at most $n p+1$ site.

The problem is the behavior of $P\left(V_{n}\right)$ as $n \rightarrow$ ∞ and the relation with the transient dynamics of (X, τ).

In this paper we will show the structure of $\zeta\left(z, V_{n}\right)$ formally by the structure matrix of the local map $f^{(n)}$, where $f^{(n)}: S^{n p+1} \mapsto S$ is defined naturally from f.
2. Results. At first, we define the $\# S^{n p} \times$ $\# S^{n p}$ structure matrix $M_{n}(a), a \in S$ with the index set is $\left\{r_{1} \cdots r_{n p} ; r_{i} \in S\right\}$.

Definition 2.1. The structure matrix $M_{n}(a)$ is as follows:

$$
\left(M_{n}(a)\right)_{r_{1} \cdots r_{n p}, s_{1} \cdots s_{n p}}
$$

$$
= \begin{cases}1 & \text { if } r_{2} \cdots r_{n p}=s_{1} \cdots s_{n p-1} \\ & \text { and } f^{(n)}\left(r_{1} \cdots r_{n p} s_{n p}\right)=a \\ 0 & \text { otherwise }\end{cases}
$$

We can express $Z_{k}\left(V_{n}\right)$ using trace formula of $M_{n}(a)$ as follows:

$$
\begin{aligned}
& Z_{k}\left(V_{n}\right)=\sum_{x \in \operatorname{Fix}\left(X, \sigma^{k}\right)} e^{-S_{k} V\left(\tau^{n} x\right)} \\
& =\sum_{\substack{x \in \operatorname{Fix}\left(X, \sigma^{k}\right) \\
y \in \operatorname{Fix}\left(\tau^{\prime}, x, \sigma^{k}\right) \\
\text { nox } x=y}} e^{-S_{k} V(y)} d(y, k) \\
& \left(d(x, k)=\#\left\{x \in \operatorname{Fix}\left(X, \sigma^{k}\right) ;\right.\right. \\
& \left.\left.\tau^{n} x=y, y \in \operatorname{Fix}\left(\tau^{n} X, \sigma^{k}\right)\right\}\right) \\
& =\sum_{y \in \operatorname{Fix}\left(\tau^{n} X, \sigma^{k}\right)} e^{-S_{k} V(y)} \\
& \operatorname{trace}\left(M_{n}\left(y_{0}\right) \cdots M_{n}\left(y_{k-1}\right)\right) \\
& =\sum_{y \in \operatorname{Fix}\left(\tau^{n} X, \sigma^{k}\right)} \operatorname{trace}\left(e^{-V\left(y_{0}\right)} M_{n}\left(y_{0}\right)\right. \\
& \left.\cdots e^{-V\left(y_{k-1}\right)} M_{n}\left(y_{k-1}\right)\right) \\
& =\sum_{\substack{y_{0} \in S \\
y_{k}-1 \in S}} \operatorname{trace}\left(e^{-V\left(y_{0}\right)} M_{n}\left(y_{0}\right)\right. \\
& \left.\cdots e^{-V\left(y_{k-1}\right)} M_{n}\left(y_{k-1}\right)\right) \\
& =\operatorname{trace}\left(\left(\sum_{a \in S} e^{-V(a)} M_{n}(a)\right)^{k}\right) .
\end{aligned}
$$

Thus, the zeta function is written by the determinant form.

$$
\begin{aligned}
\zeta\left(z, V_{n}\right) & =\exp \left(\sum_{k>0} \frac{1}{k} \operatorname{trace}\left(z \sum_{a \in S} e^{-V(a)} M_{n}(a)\right)^{k}\right) \\
& =\exp \left(\operatorname{trace}\left(\sum_{k>0} \frac{1}{k}\left(z \sum_{a \in S} e^{-V(a)} M_{n}(a)\right)^{k}\right)\right) \\
& =\exp \left(\operatorname{trace}\left(-\log \left(I-z \sum_{a \in S} e^{-V(a)} M_{n}(a)\right)\right)\right) \\
& =\operatorname{det}\left(I-z \sum_{a \in S} e^{-V(a)} M_{n}(a)\right)^{-1} \\
& \left(|z|<e^{-P\left(V_{n}\right)}\right) .
\end{aligned}
$$

As a result, we have the theorem.

