"Hasse principle" for $GL_2(D)$

By Takashi Ono

Department of Mathematics, The Johns Hopkins University, Baltimore, MD 21218, U.S.A. (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1999)

1. Statement of a theorem. Let D be a Euclidean domain and $G = GL_2(D)$, the group of invertible 2×2 matrices over $D^{(0)}$. We shall prove that

(1.1) **Theorem.** III(G) = 1, *i.e.*, G enjoys the "Hasse principle".¹⁾

(1.2) **Remark.** Thanks to an excellent idea of M. Mazur, to prove (1.1) it is enough to verify that

(1.3)
$$\operatorname{End}_{c}(G) = \operatorname{Inn}(G),$$

where the left hand side is the set of all endomorphisms of G preserving conjugacy classes of $G^{(1)}$ Thus for each $F \in \operatorname{End}_c(G)$, and $A \in G$, we have

(1.4)
$$F(A) \sim A$$
, i.e., $F(A) = PAP^{-1}$,
 P depending on A .

Given an $F \in \operatorname{End}_{c}(G)$ we connect two elements A, B of G by a string according to the rule:

(1.5)
$$A - B \iff \exists P \in G$$
 so that
 $F(A) = PAP^{-1} \text{ and } F(B) = PBP^{-1}.$

Note that A - B is not, a priori, an equivalence relation defined on $G^{(2)}$ Even so, this relation is very useful to prove the Hasse principle $\operatorname{III}(G) = 1$. Note also that the relation (1.5) depends only on F modulo $\operatorname{Inn}(G)$.

2. Generators for G. Before proving (1.1), let us gather some basic facts on $G = GL_2(D), D$ being a Euclidean domain. Denote by D^* the group of invertible elements of D. Let N, M_{λ} ($\lambda \in D$, $\lambda \neq 0$, D_{μ} ($\mu \in D^*$, $\mu \neq 1$) be elements of G defined by

(2.1)
$$N = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M_{\lambda} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix}, \quad D_{\mu} = \begin{pmatrix} 1 & 0 \\ 0 & \mu \end{pmatrix}.$$

It is well-known and easy to prove that

(2.2)
$$G$$
 is generated by N, M_{λ}, D_{μ} :
 $G = \langle N, M_{\lambda}, D_{\mu} \rangle,$

We will use repeatedly the following equalities on $P = \begin{pmatrix} x \ y \\ z \ t \end{pmatrix} \in G.$

(2.3)
$$PNP^{-1} = (\det P)^{-1} \begin{pmatrix} yt - xz & x^2 - y^2 \\ t^2 - z^2 & xz - yt \end{pmatrix}$$

(2.4)
$$M_{\lambda}PNP^{-1} = (\det P)^{-1}$$

 $\times \begin{pmatrix} yt - xz + \lambda(t^2 - z^2) & x^2 - y^2 + \lambda(xz - yt) \\ t^2 - z^2 & xz - yt \end{pmatrix}$

(2.5)
$$D_{\mu}PNP^{-1}$$

= $(\det P)^{-1} \begin{pmatrix} yt - xz & x^2 - y^2 \\ \mu(t^2 - z^2) & \mu(xz - yt) \end{pmatrix}$

3. Proof of the theorem.

Step (I). To prove that $N - M_{\lambda}$. Since we can adjust a given F in $\operatorname{End}_{c}(G)$ by elements of $\operatorname{Inn}(G)$, We may assume that

(3.1)
$$\begin{cases} F(M_{\lambda}) = M_{\lambda}, \\ F(N) = PNP^{-1}, \quad P \in G. \end{cases}$$

Our problem is to find $P_0 \in G$ so that

(3.2)
$$\begin{cases} F(M_{\lambda}) = M_{\lambda} = P_0 M_{\lambda} P_0^{-1}, \\ F(N) = P N P^{-1} = P_0 N P_0^{-1}, \end{cases}$$

Put

(3.3)
$$P = \begin{pmatrix} x \ y \\ z \ t \end{pmatrix}, \quad P_0 = \begin{pmatrix} 1 \ y_0 \\ 0 \ 1 \end{pmatrix}$$

Clearly P_0 , with any $y_0 \in D$, meets the first equality of (3.2). As for the second equality of (3.2), in view of (2.3) for P and P_0 we are forced to set $y_0 = (yt - y_0)$ (xz)/(xt-yz) and then we should verify the equality (3.2) which boils down to a single equality:

(3.4)
$$\det(P) = xt - yz = t^2 - z^2$$

as a little calculation shows. To get (3.4), we must use seriously the assumption that F is a homomor-

 $^{^{0)}}$ Needless to say, D may be any commutative field.

¹⁾ As for unexplained notation and facts in this paper, see

 <sup>[1].
 &</sup>lt;sup>2)</sup> This reminds me somehow a children's string game
 ⁽¹⁾ TOPH in Japanese. One can play this game on any group G once an endomorphism $F \in$ $\operatorname{End}_{c}(G)$ is chosen.