A note on algebraic aspects of boundary feedback control systems of parabolic type

By Takao Nambu

Department of Applied Mathematics, Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501 (Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1999)

1. Introduction. In the study of stabilization of boundary control systems, most fundamental is the static feedback control scheme: Based on a finite number of the observed data (outputs), it is the scheme to feed them back *directly* into the system through the boundary. Let Ω denote a bounded domain of \mathbb{R}^m with the boundary Γ which consists of a finite number of smooth components of (m-1)dimension. The control system studied here is the following initial-boundary value problem:

(1)
$$\begin{aligned} \frac{\partial u}{\partial t} + \mathcal{L}u &= 0 \quad \text{in } (0, \infty) \times \Omega, \\ \tau u &= \sum_{k=1}^{N} \langle u, w_k \rangle_{\Omega} h_k \quad \text{on } (0, \infty) \times \Gamma, \\ u(0, \cdot) &= u_0(\cdot) \quad \text{in } \Omega. \end{aligned}$$

Here, \mathcal{L} denotes a uniformly elliptic differential operator of order 2 in Ω defined by

$$\mathcal{L}u = -\sum_{i,j=1}^{m} \frac{\partial}{\partial x_i} \left(a_{ij}(x) \frac{\partial u}{\partial x_j} \right) + \sum_{i=1}^{m} b_i(x) \frac{\partial u}{\partial x_i} + c(x)u,$$

and $a_{ij}(x) = a_{ji}(x)$ for $1 \leq i, j \leq m, x \in \overline{\Omega}$. The boundary operator τ associated with \mathcal{L} is either τ_1 of the Dirichlet type or τ_2 of the Robin type:

$$\begin{aligned} \tau_1 u &= u|_{\Gamma}, \\ \tau_2 u &= \frac{\partial u}{\partial \nu} + \sigma(\xi) u \\ &= \sum_{i,j=1}^m a_{ij}(\xi) \nu_i(\xi) \frac{\partial u}{\partial x_j} \Big|_{\Gamma} + \sigma(\xi) u|_{\Gamma}, \end{aligned}$$

where $(\nu_1(\xi), \ldots, \nu_m(\xi))$ denotes the unit outer normal at $\xi \in \Gamma$. Necessary regularity on $\overline{\Omega}$ and on Γ of coefficients of \mathcal{L} and τ is assumed tacitly. The inner product and the norm in $L^2(\Omega)$ are denoted by $\langle \cdot, \cdot \rangle_{\Omega}$ and $\|\cdot\|$, respectively. The symbol $\|\cdot\|$ is also used for the $\mathcal{L}(L^2(\Omega))$ -norm. In eq. (1), $\langle u, w_k \rangle_{\Omega}$ denote the outputs, where $w_k \in L^2(\Omega)$, and h_k the actuators belonging to $H^{3/2}(\Gamma)$ in the case of the Dirichlet boundary condition, or $H^{1/2}(\Gamma)$ in the Robin boundary condition.

Let us define the linear operators L_i and M_i , i = 1, 2 in $L^2(\Omega)$ by

$$L_i u = \mathcal{L}u, \quad u \in \mathcal{D}(L_i),$$

$$\mathcal{D}(L_i) = \{ u \in H^2(\Omega) ; \ \tau_i u = 0 \text{ on } \Gamma \}$$

and

$$M_{i}u = \mathcal{L}u, \quad u \in \mathcal{D}(M_{i}),$$
$$\mathcal{D}(M_{i}) = \left\{ u \in H^{2}(\Omega) ; \\ \tau_{i}u = \sum_{k=1}^{N} \langle u, w_{k} \rangle_{\Omega} h_{k} \text{ on } \Gamma \right\}$$

respectively. Henceforth L stands for either L_1 or L_2 when it is distinguished from the context. The same symbolic convention applies to M_i as well as other operators. Eq. (1) is then simply rewritten as the equation in $L^2(\Omega)$:

(2)
$$\frac{du}{dt} + Mu = 0, \quad u(0) = u_0.$$

Given a $\mu > 0$, the problem is to find w_k 's and h_k 's such that the semigroup $\exp(-tM)$ satisfies the decay estimate

(3)
$$||e^{-tM}|| \leq \operatorname{const} e^{-\mu t}, \quad t \ge 0.$$

In [4], this estimate was established via the fractional powers L_c^{ω} , $L_c = L + c$, c > 0 and the related fractional calculus. In the case of the Robin boundary condition, for example, we set

$$x(t) = L_{2c}^{-\omega} u(t), \quad \frac{1}{4} < \omega < \frac{1}{2},$$

and, noticing the relation: $\mathcal{D}(L_{2c}^{\omega}) = H^{2\omega}(\Omega)$ for