A note on algebraic aspects of boundary feedback control systems of parabolic type

By Takao NAMBu
Department of Applied Mathematics, Faculty of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 13, 1999)

1. Introduction. In the study of stabilization of boundary control systems, most fundamental is the static feedback control scheme: Based on a finite number of the observed data (outputs), it is the scheme to feed them back directly into the system through the boundary. Let Ω denote a bounded domain of \mathbb{R}^{m} with the boundary Γ which consists of a finite number of smooth components of $(m-1)$ dimension. The control system studied here is the following initial-boundary value problem:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\mathcal{L} u=0 \quad \text { in } \quad(0, \infty) \times \Omega \\
& \tau u=\sum_{k=1}^{N}\left\langle u, w_{k}\right\rangle_{\Omega} h_{k} \quad \text { on }(0, \infty) \times \Gamma \tag{1}\\
& u(0, \cdot)=u_{0}(\cdot) \text { in } \Omega
\end{align*}
$$

Here, \mathcal{L} denotes a uniformly elliptic differential operator of order 2 in Ω defined by

$$
\begin{aligned}
\mathcal{L} u= & -\sum_{i, j=1}^{m} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right) \\
& +\sum_{i=1}^{m} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u
\end{aligned}
$$

and $a_{i j}(x)=a_{j i}(x)$ for $1 \leqslant i, j \leqslant m, \quad x \in \bar{\Omega}$. The boundary operator τ associated with \mathcal{L} is either τ_{1} of the Dirichlet type or τ_{2} of the Robin type:

$$
\begin{aligned}
\tau_{1} u & =\left.u\right|_{\Gamma} \\
\tau_{2} u & =\frac{\partial u}{\partial \nu}+\sigma(\xi) u \\
& =\left.\sum_{i, j=1}^{m} a_{i j}(\xi) \nu_{i}(\xi) \frac{\partial u}{\partial x_{j}}\right|_{\Gamma}+\left.\sigma(\xi) u\right|_{\Gamma}
\end{aligned}
$$

where $\left(\nu_{1}(\xi), \ldots, \nu_{m}(\xi)\right)$ denotes the unit outer normal at $\xi \in \Gamma$. Necessary regularity on $\bar{\Omega}$ and on Γ of coefficients of \mathcal{L} and τ is assumed tacitly. The inner product and the norm in $L^{2}(\Omega)$ are denoted by $\langle\cdot, \cdot\rangle_{\Omega}$ and $\|\cdot\|$, respectively. The symbol $\|\cdot\|$ is also used for the $\mathcal{L}\left(L^{2}(\Omega)\right)$-norm. In eq. (1), $\left\langle u, w_{k}\right\rangle_{\Omega}$
denote the outputs, where $w_{k} \in L^{2}(\Omega)$, and h_{k} the actuators belonging to $H^{3 / 2}(\Gamma)$ in the case of the Dirichlet boundary condition, or $H^{1 / 2}(\Gamma)$ in the Robin boundary condition.

Let us define the linear operators L_{i} and $M_{i}, i=$ 1,2 in $L^{2}(\Omega)$ by

$$
\begin{aligned}
& L_{i} u=\mathcal{L} u, \quad u \in \mathcal{D}\left(L_{i}\right) \\
& \mathcal{D}\left(L_{i}\right)=\left\{u \in H^{2}(\Omega) ; \tau_{i} u=0 \text { on } \Gamma\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{i} u= & \mathcal{L} u, \quad u \in \mathcal{D}\left(M_{i}\right), \\
\mathcal{D}\left(M_{i}\right)= & \left\{u \in H^{2}(\Omega) ;\right. \\
& \left.\tau_{i} u=\sum_{k=1}^{N}\left\langle u, w_{k}\right\rangle_{\Omega} h_{k} \text { on } \Gamma\right\},
\end{aligned}
$$

respectively. Henceforth L stands for either L_{1} or L_{2} when it is distinguished from the context. The same symbolic convention applies to M_{i} as well as other operators. Eq. (1) is then simply rewritten as the equation in $L^{2}(\Omega)$:

$$
\begin{equation*}
\frac{d u}{d t}+M u=0, \quad u(0)=u_{0} \tag{2}
\end{equation*}
$$

Given a $\mu>0$, the problem is to find w_{k} 's and h_{k} 's such that the semigroup $\exp (-t M)$ satisfies the decay estimate

$$
\begin{equation*}
\left\|e^{-t M}\right\| \leqslant \text { const } e^{-\mu t}, \quad t \geqslant 0 \tag{3}
\end{equation*}
$$

In [4], this estimate was established via the fractional powers $L_{c}^{\omega}, L_{c}=L+c, c>0$ and the related fractional calculus. In the case of the Robin boundary condition, for example, we set

$$
x(t)=L_{2 c}^{-\omega} u(t), \quad \frac{1}{4}<\omega<\frac{1}{2}
$$

and, noticing the relation: $\mathcal{D}\left(L_{2 c}^{\omega}\right)=H^{2 \omega}(\Omega)$ for

