On the topology of the moduli space of negative constant scalar curvature metrics on a Haken manifold

By Minyo Katagiri

Department of Mathematics, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506 (Communicated by Shigefumi MORI, M.J.A., Sept. 13, 1999)

1. Introduction. The topology of the space of positive scalar curvature metrics on a closed manifold M has been studied by several authors ([6]). It turns out that the topology of this space is very complicated, and the moduli space of positive scalar curvature metrics quotient by the diffeomorphism group of M can have infinitely many connected components. By contrast, the topology of the space of negative scalar curvature metrics is very simple ([7]).

Let M be a closed connected manifold. Denote by $\mathcal{M}_{-1}(M)$ the set of all Riemannian metrics with scalar curvature -1. The diffeomorphism group acts on $\mathcal{M}_{-1}(M)$ by pull-back. In this paper, we will report the topological structure of the moduli space $\mathcal{M}_{-1}(M)/\mathrm{Diff}_0(M)$, the space of Riemannian metrics with scalar curvature -1 devided by the group $\text{Diff}_0(M)$ of diffeomorphisms which are isotopic to the identity map. The result gives a fact that if M is a closed connected Haken manifold with no nontrivial symmetry, then the moduli space $\mathcal{M}_{-1}(M)/\mathrm{Diff}_0(M)$ is a contractible manifold. Note that this result is an analogue to the contractibility of the Teichmüller space on an oriented surface with negative Euler number ([3], [10]). It seems that there are similarities between Haken manifolds and oriented surfaces with non-positive Euler number.

2. The space of negative constant scalar curvature metrics. Let M be a closed nmanifold, and $\mathcal{M}(M)$ be the space of all Riemannain metrics on M. For $g \in \mathcal{M}(M)$, let R_g denote the scalar curvature of g, and $\mathcal{M}_{-1}(M)$ denote the space of Riemannian metrics with scalar curvature -1. It is known that if M is a closed n-manifold, $n \geq 3$, then M admits a Riemannian metric with scalar curvature -1, i.e., $\mathcal{M}_{-1}(M)$ is a non-empty set if dim $M \geq 3$. We denote by $L_k^2 \mathcal{M}(M)$ the space of all L_k^2 -metrics, where L_k^2 is a Sobolev space whose derivatives of order less than or equal to k are all in L^2 . Then the space $L_k^2 \mathcal{M}(M)$ is a Hilbert manifold for 2k > n. It is known that the space $\mathcal{M}(M)$ is an ILH-manifold in the sense of the inverse limit of Hilbert manifolds: $\mathcal{M}(M) = \lim_{\leftarrow} L_k^2 \mathcal{M}(M)$ ([8]).

For 2k > n+2, let $\mathcal{R} : L_k^2 \mathcal{M}(M) \to L_{k-2}^2(M)$ defined by $\mathcal{R}(g) := R_g$ denote the scalar curvature map. The tangent space at $g \in L_k^2 \mathcal{M}(M)$ can be identified with the space $L_k^2(M; S^2T^*M)$ of symmetric (0, 2)-tensor fields of class L_k^2 . We denote its differential at $g \in L_k^2 \mathcal{M}(M)$ by $\beta_g := d\mathcal{R}_g :$ $L_k^2(M; S^2T^*M) \to L_{k-2}^2(M).$

Lemma 2.1. The differential β_g of the scalar curvature map is given by

$$\beta_g(h) = -\Delta_g(\operatorname{tr}_g h) + \delta_g \delta_g h - (h, \operatorname{Ric}_g),$$

where δ_g is the formal adjoint of the covariant derivative of g and Ric_g is the Ricci curvature of g.

Theorem 2.2 ([2]). Let $g \in L^2_k \mathcal{M}(M)$, 2k > n+2, with $R_g = -1$. Then β_g is surjective.

Theorem 2.3. $\mathcal{M}_{-1}(M)$ is a smooth contractible ILH-submanifold of $\mathcal{M}(M)$ with tangent space $T_g \mathcal{M}_{-1}(M)$ at $g \in \mathcal{M}_{-1}(M)$ given as Ker β_g the kernel of the differential of the scalar curvature map.

3. Some results on Haken manifolds. A compact connected orientable 3-manifold M is said to be *irreducible* if every 2-sphere S^2 in M bounds a 3-ball B^3 .

Let M be a compact connected orientable 3manifold. Let S be a compact connected orientable surface, and let $i: S \to M$ be an embedding of Sinto M. Then i induces a homomorphisms on the homotopy groups $i_*: \pi_k(S) \to \pi_k(M)$ for $k \ge 1$. The embedded surface i(S) is *incompressible* if the induced homomorphism i_* is injective on the fundamental group $\pi_1(S)$. A 3-manifold is *sufficiently large* if it contains an incompressible surface of genus greater than zero.

Definition 3.1. A Haken manifold M is an irreducible compact connected orientable sufficiently large 3-manifold.

Remark 3.2. A connected manifold M is called a $K(\pi, 1)$ -manifold if the fundamental group