"Hasse principle" for free groups

By Takashi OnO *) and Hideo Wada**)
(Communicated by Shokichi Iyanaga, M.J.A., Jan. 12, 1999)

1. Notation and results. Let G be a group and f be a cocyle, i.e., a mapping from G to G which satisfies
(1) $f(X Y)=f(X) f(Y)^{X}$ for any $X, Y \in G$

$$
\text { where } Y^{X}=X Y X^{-1}
$$

For each $X \in G$, if there exists $M \in G$ such that $f(X)=M^{-1} M^{X}$, then f is called a local coboundary. More strongly, if M can be chosen independent of X, then f is called a global coboundary. If any local coboundary is a global coboundary, we say that G enjoys the Hasse principle.

For any integer $N \geq 1$, we set

$$
\begin{array}{r}
\Gamma(N)=\left\{A \in S L_{2}(\mathbf{Z}) ; A \equiv E \bmod N\right\} \\
E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{array}
$$

Then, we set

$$
\bar{\Gamma}(N)= \begin{cases}\Gamma(N) /\{ \pm E\} & \text { if } N=1,2 \\ \Gamma(N) & \text { if } N \geq 3\end{cases}
$$

In [5] it is proved that $G=P S L_{2}(\mathbf{Z})=\bar{\Gamma}(1)$ and $G=P S L_{2}\left(\mathbf{F}_{p}\right)$ enjoy the Hasse principle. In this paper we shall prove the following

Theorem. Any free group of finite rank enjoys the Hasse principle.

For $N \geq 2, \bar{\Gamma}(N)$ is a free group of finite rank (cf. [1] p.362, 3D, Theorem). Therefore we get the following

Corollary. For any $N \geq 1, \bar{\Gamma}(N)$ enjoys the Hasse principle.

It is curious that we need parabolic matrices in $\Gamma(p), p=$ an odd prime, to prove a theorem on free groups.
2. Proof of the theorem. Let p be an odd prime. Then $\Gamma(p)$ has $\left(p^{2}-1\right) / 2$ parabolic elements and the following p parabolic elements

$$
A=E+p\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

[^0]\[

B_{t}=E+p\left($$
\begin{array}{cc}
t & -t^{2} \\
1 & -t
\end{array}
$$\right), t=0,1, \cdots, p-2
\]

which are independent because the cusps of A, B_{t} are ∞, t, respectively. Let $G=\left\langle A, B_{0}, B_{1}, \cdots, B_{k-2}\right\rangle$ be the free group generated by $A, B_{0}, B_{1}, \cdots, B_{k-2}$, $(2 \leq k \leq p)$, and f be a local coboundary. Then there is an element $M_{1} \in G$ such that $f(A)=$ $M_{1}^{-1} M_{1}^{A}$. Put $f_{1}(X)=M_{1} f(X) M_{1}^{-X}$. Then f_{1} is also a local coboundary and $f_{1}(A)=1$. For any $B=B_{t}(t \leq k-2)$, there exists $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ such that $f_{1}(B)=M^{-1} M^{B}=M^{-1} B M B^{-1}$. We can easily verify that

$$
M^{-1} B M=E+p\left(\begin{array}{cc}
-x y & -y^{2} \tag{2}\\
x^{2} & x y
\end{array}\right)
$$

$$
\text { where } x=a-c t, y=b-d t
$$

As f_{1} is a cocycle, we have

$$
f_{1}(A B)=f_{1}(A) f_{1}(B)^{A}=A\left(M^{-1} B M B^{-1}\right) A^{-1}
$$

On the other hand, since f_{1} is a local coboundary, there exists $N_{1} \in G$ such that

$$
f_{1}(A B)=N_{1}^{-1} N_{1}^{A B}=N_{1}^{-1} A B N_{1} B^{-1} A^{-1}
$$

From these two equations, we get

$$
\begin{equation*}
A M^{-1} B M=N_{1}^{-1} A B N_{1} \tag{3}
\end{equation*}
$$

Taking the traces of matrices in (3), we have

$$
\begin{aligned}
& \operatorname{tr}\left(A M^{-1} B M\right) \\
= & \operatorname{tr}\left(E+p\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right)\left(E+p\left(\begin{array}{cc}
-x y & -y^{2} \\
x^{2} & x y
\end{array}\right)\right) \\
= & \operatorname{tr}\left(E+p^{2}\left(\begin{array}{cc}
x^{2} & x y \\
0 & 0
\end{array}\right)\right)=2+p^{2} x^{2} \\
& \operatorname{tr}\left(N_{1}^{-1} A B N_{1}\right)=\operatorname{tr}(A B)=2+p^{2}
\end{aligned}
$$

Therefore x must be ± 1. As $x=a-c t \equiv 1(\bmod p)$, we get $x=1$.

If $t=0$, then $a=x=1$ and $y=b$. From (2), $M^{-1} B M$ depends only on x and y. So, if we put $M_{2}=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$, then $M_{2} \in G$ and

$$
f_{1}(B)=M^{-1} B M B^{-1}
$$

[^0]: *) Department of Mathematics, Johns Hopkins University, U.S.A.
 **) Department of Mathematics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554.

