"Hasse principle" for free groups

By Takashi ONO^{*)} and Hideo WADA^{**)}

(Communicated by Shokichi IYANAGA, M.J.A., Jan. 12, 1999)

1. Notation and results. Let G be a group and f be a cocyle, i.e., a mapping from G to G which satisfies

(1)
$$f(XY) = f(X)f(Y)^X$$
 for any $X, Y \in G$
where $Y^X = XYX^{-1}$.

For each $X \in G$, if there exists $M \in G$ such that $f(X) = M^{-1}M^X$, then f is called a *local cobound-ary*. More strongly, if M can be chosen independent of X, then f is called a *global coboundary*. If any local coboundary is a global coboundary, we say that G enjoys the *Hasse principle*.

For any integer $N \ge 1$, we set

$$\Gamma(N) = \{ A \in SL_2(\mathbf{Z}); A \equiv E \mod N \},\$$
$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Then, we set

$$\bar{\Gamma}(N) = \begin{cases} \Gamma(N)/\{\pm E\} & \text{if } N = 1, 2, \\ \Gamma(N) & \text{if } N \ge 3. \end{cases}$$

In [5] it is proved that $G = PSL_2(\mathbf{Z}) = \overline{\Gamma}(1)$ and $G = PSL_2(\mathbf{F}_p)$ enjoy the Hasse principle. In this paper we shall prove the following

Theorem. Any free group of finite rank enjoys the Hasse principle.

For $N \ge 2$, $\overline{\Gamma}(N)$ is a free group of finite rank (cf. [1] p.362, 3D, Theorem). Therefore we get the following

Corollary. For any $N \ge 1$, $\overline{\Gamma}(N)$ enjoys the Hasse principle.

It is curious that we need parabolic matrices in $\Gamma(p)$, p = an odd prime, to prove a theorem on free groups.

2. Proof of the theorem. Let p be an odd prime. Then $\Gamma(p)$ has $(p^2 - 1)/2$ parabolic elements and the following p parabolic elements

$$A = E + p \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

*) Department of Mathematics, Johns Hopkins University, U.S.A.

**) Department of Mathematics, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102–8554.

$$B_t = E + p \begin{pmatrix} t & -t^2 \\ 1 & -t \end{pmatrix}, t = 0, 1, \cdots, p - 2,$$

which are independent because the cusps of A, B_t are ∞ , t, respectively. Let $G = \langle A, B_0, B_1, \cdots, B_{k-2} \rangle$ be the free group generated by A, B_0 , B_1 , \cdots , B_{k-2} , $(2 \leq k \leq p)$, and f be a local coboundary. Then there is an element $M_1 \in G$ such that $f(A) = M_1^{-1}M_1^A$. Put $f_1(X) = M_1f(X)M_1^{-X}$. Then f_1 is also a local coboundary and $f_1(A) = 1$. For any $B = B_t$ ($t \leq k - 2$), there exists $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ such that $f_1(B) = M^{-1}M^B = M^{-1}BMB^{-1}$. We can easily verify that

(2)
$$M^{-1}BM = E + p \begin{pmatrix} -xy & -y^2 \\ x^2 & xy \end{pmatrix}$$
where $x = a - ct, \ y = b - dt$.

As f_1 is a cocycle, we have

$$f_1(AB) = f_1(A)f_1(B)^A = A(M^{-1}BMB^{-1})A^{-1}.$$

On the other hand, since f_1 is a local coboundary, there exists $N_1 \in G$ such that

$$f_1(AB) = N_1^{-1} N_1^{AB} = N_1^{-1} AB N_1 B^{-1} A^{-1}.$$

From these two equations, we get

(3)
$$AM^{-1}BM = N_1^{-1}ABN_1$$

Taking the traces of matrices in (3), we have

$$tr(AM^{-1}BM) = tr(E + p\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix})(E + p\begin{pmatrix} -xy & -y^2\\ x^2 & xy \end{pmatrix}) = tr(E + p^2\begin{pmatrix} x^2 & xy\\ 0 & 0 \end{pmatrix}) = 2 + p^2x^2,$$
$$tr(N_1^{-1}ABN_1) = tr(AB) = 2 + p^2.$$

Therefore x must be ± 1 . As $x = a - ct \equiv 1 \pmod{p}$, we get x = 1.

If t = 0, then a = x = 1 and y = b. From (2), $M^{-1}BM$ depends only on x and y. So, if we put $M_2 = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, then $M_2 \in G$ and $f_1(B) = M^{-1}BMB^{-1}$

No. 1]