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Abstract" An elliptic curve E. defined over l is called a Q-curve if E and E are
isogenous over Q for any ff in Gal(Q/Q). Many examples of Q-curves defined over quadra-
tic fields have already been known. In this paper, we will give families of Q-curves defined
over quartic and octic number fields.

1. Introduction. Definition 1.1. Let E be
an elliptic curve defined over Q. Then E is cal-
led a Q-curve if E and its Galois conjugate E
are isogenous over Q for any ( in GaI(Q/Q).
Moreover we call a Q-curve E of degree N if E
has an isogeny to its conjugate E with degree
dividing N for any ( in Gal(Q/Q).

In Gross [2], E was assumed to have com-
plex multiplication, but we do not assume that in
this paper.

Q-curves are deeply connected with a mod-
ularity problem for a certain class of high dimen-
sional abelian varieties over Q. The following

conjecture, which is known as a generalized
Taniyama-Shimura conjecture, elucidates the re-
lation of Q-curves to the problem’

Conjecture 1.2 (Ribet). Every Q-curve is

modular, namely it is isogenous over Q to a fac-
tor of the jacobian variety of the modular curve
XI(N) for a positive integer N.

Recently many examples of Q-curves de-
fined over quadratic fields have been constructed
in [3], [4] and [8], and the validity of this conjec-
ture have been confirmed in these cases. Thus we
are interested in finding non-trivial examples of
Q-curves defined over number fields whose de-
grees are greater than two.

In his paper [3], Hasegawa has given families
of Q-curves of prime degree p under the condi-
tion that the modular curve Xo(P)has genus
zero. In the present paper we obtain families of
Q-curves of degree N over quartic and octic
number fields, by dealing with the case where the
modular curve Xo(N) is hyperelliptic and /V is a
square-free positive integer.

2. Data on the modular curve X0(N). Let

N-IIin__lpi be a square-free positive integer.
We denote by Xo(N) the modular curve corres-

ponding to the congruence subgroup Fo (N)of
SL2(Z). For a positive integer d 4= 1 dividing N,
we define the Atkin-Lehner involution wa on

Xo(N), and denote by Xo*(N) the quotient curve

Xo(N)/(weld[ N>, where w means the identity
morphism over X0(N). From now on we assume
that Xo(N) is a hyperelliptic curve with genus g.
In order to state our main result, we need some
basic data about the modular curve Xo(N), i.e. a
defining equation of Xo(N) over Q, the action of
the Atkin-Lehner involutions wa, diN, d 4: 1, on

Xo (N)and a certain formula for the covering

map j from X0 (N) to the projective j-line. We
can calculate these by using the method of [5]. In
the following, we sketch this method which is

based on the computation of the Fourier coeffi-
cients of some modular forms.

Let S2(Fo(N)) be the vector space over C of
cusp forms of weight two for Fo (N). We note
that there is a natural isomorphism:

H(Xo(N) Y2Xo(mc) S(Fo (N)).
From the assumption that N is square-free and

Xo(N) is hyperelliptic, any automorphism wa,

diN, has no fixed cuspidal points, so v/- I co is

not a Weierstrass point, where v/- 1 oo is the
point of X0(N) represented by v/- 1 oo. There-
fore we can choose a basis hi,... ho of S.(Fo(N))
with the following Fourier expansions"

(o+)qO+l ()q +h(z) qO+s + + sl
h2(z qO-1 + s2 + + s q + "",

ho(z) q + s) + + so q + "",


