On Terai's conjecture*)

By Zhenfu CAO and Xiaolei DONG
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China
(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1998)

Abstract

Terai presented the following conjecture: If $a^{2}+b^{2}=c^{2}$ with $a>0, b>0$, $c>0, \operatorname{gcd}(a, b, c)=1$ and a even, then the diophantine equation $x^{2}+b^{m}=c^{n}$ has the only positive integral solution $(x, m, n)=(a, 2,2)$. In this paper we prove that if (i) b is a prime power, $c \equiv 5(\bmod 8)$, or (ii) $c \equiv 5(\bmod 8)$ is a prime power, then Terai's conjecture holds.

1. Introduction. In 1956, Jeśmanowicz [4] conjectured that if a, b, c are Pythagorean triples, i.e. positive integers a, b, c satisfying $a^{2}+$ $b^{2}=c^{2}$, then the Diophantine equation

$$
a^{x}+b^{y}=c^{z}
$$

has the only positive integral solution (x, y, z) $=(2,2,2)$. When a, b, c take some special Pythagorean triples, it was discussed by Sierpinski [14], C. Ko [5-10], J. R. Chen [2], Dem'janenko [3] and others.

In 1993, as an analogue of above conjecture, Terai [16] presented the following:

Conjecture. If $a^{2}+b^{2}=c^{2}$ with $\operatorname{gcd}(a, b$, $c)=1$ and a even, then the Diophantine equation (1)

$$
x^{2}+b^{m}=c^{n}
$$

has the only positive integral solution (x, m, n) $=(a, 2,2)$.

Terai proved that if b and c are primes such that (i) $b^{2}+1=2 c$, (ii) $d=1$ or even if $b \equiv$ $1(\bmod 4)$, where d is the order of a prime divisor of $[c]$ in the ideal class group of $\boldsymbol{Q}(\sqrt{-b})$, then the conjecture holds. Further, he proved that if $b^{2}+1=2 c, b<20, c<200$, then conjecture holds. Recently, X. Chen and M. Le [11] proved that if $b \not \equiv 1(\bmod 16), b^{2}+1=2 c, b$ and c are both odd primes, then the conjecture holds, and P. Yuan and J. Wang [17] proved that if $b \equiv \pm 3(\bmod 8)$ is a prime, then Terai's conjecture holds.

In this paper, we consider Terai's conjecture when b or c is prime power. Then we prove the following :

[^0]Theorem 1. If b is a prime power, $c \equiv$ $5(\bmod 8)$, then Terai's conjecture holds.

Corollary. If $2 k+1$ is a prime, $k \equiv 1$ or $2(\bmod 4)$, then the Diophantine equation

$$
x^{2}+(2 k+1)^{m}=\left(2 k^{2}+2 k+1\right)^{n}
$$

has the only positive integral solution (x, m, n) $=\left(2 k^{2}+2 k, 2,2\right)$.

Theorem 2. If $c \equiv 5(\bmod 8)$ is a prime power, then Terai's conjecture holds.
2. Some lemmas. We use the following lemmas to prove our theorems.

Lemma 1. If a, b, c are positive integers satisfying $a^{2}+b^{2}=c^{2}$, where $2 \mid a, \operatorname{gcd}(a, b, c)$ $=1$, then

$$
a=2 s t, b=s^{2}-t^{2}, c=s^{2}+t^{2}
$$

where $s>t>0, \operatorname{gcd}(s, t)=1$ and $s \not \equiv$ $t(\bmod 2)$.

Lemma 2 (Störmer [15]). The Diophantine equation

$$
x^{2}+1=2 y^{n}
$$

has no solutions in integers $x>1, y \geq 1$ and n odd ≥ 3.

Lemma 3 (Ljunggren [12]). The Diophantine equation

$$
x^{2}+1=2 y^{4}
$$

has the only positive integral solutions $(x, y)=$ $(1,1)$ and $(239,13)$.

Lemma 4 (Cao [1]). If p is an odd prime and the Diophantine equation

$$
x^{p}+1=2 y^{2}(|y|>1)
$$

has integral solution x, y, then $2 p \mid y$.
Now, we assume that a, b, c are Pythagorean triples with $\operatorname{gcd}(a, b, c)=1$ and $2 \mid a$.

Lemma 5. If $c \equiv 5(\bmod 8)$, then we have $(b / c)=(c / b)=-1$,
where $(* / *)$ denotes Jacobi's symbol.

[^0]: *) Supported by the National Natural Science Foundation of China and the Heilongjiang Provincial Natural Science Foundation.

 1991 Mathematics Subject Classification: 11D61.

