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1. Statement of results. Let k be a field
and (R, m) a local integral k-algebra with field
of fractions K. We study k-valuations v of K
with a center in R, that is, such that their valua-
tion ring (R,, m,) contains R and m, (? k (0).
We denote by q) the totally ordered group of the
valuation and set F= v(R\{0})c q)+ U {0}.
The valuation determines on R a filtration de-
fined by the ideals

P(R) {x R/v(x) >-}
+

or P (R.) (x R/v(x) > },
and the associated graded ring introduced by
Spivakovsky ([6], see also [4], [7]):

grR (P/P2,
which is a F(or q+ )-graded (R/mv R)-
algebra. We assume throughout that has finite
rational rank r (q))(and therefore is countable)
and finite height (or rank) h() The three facts,
extracted from [8], are the following:

1) A connexion between valuation theory and torie
geometry

Proposition 1.1. For any specialization (see
[lO],vol.2, Chap. VI,{}16) of the valuation to a
valuation 9o with a center in R and such that

mvo V) R m and the residue field extension kR
kvo Rvo/ mvo induced by the inclusion R Ro is
trivial, the algebra gro R is isomorphic to a quo-
tient of a polynomial ring kR[ (Ut)ieI] with co-

efficients in kR and possibly countably many indeter-
minates by a binomial ideal, i.e. an ideal with (pos-
sibly countably many) generators of the form U’-
/mnUn

where U’- U1’’’ Usms and /,,n k*R.
It means that it is a deformation of a (non normal)
toric variety (see [2]), possibly of infinite embedding
dimension, which is nothing but SpeckR [tr], where
kR[ tr] is the semigroup algebra of F, obtained by
replacing all mn by 1.
2) Structure of valuation semigroup algebras and
regularity of grvRv

Proposition 1.2. The graded kv-algebra
grR, is a filtering direct limit of termic maps (i.e
mapping a variable to a term, of the form constant

a monomial) between polynomial subalgebras in r (q)
variables. The semigroup algebra k,[ t+] is the
direct limit of the corresponding system of toric (or
monomial) maps, obtained by replacing all the con-
stants by 1,.

3) Noetherianity of -adie completions
Proposition 1.3. Assume that R is an analy-

tically irreducible noetherian local ring. If 11 de-
notes the valuation of height one with which 1 is
composed, and p m, (? R the center of on R,
then the completion of the ring R with respect to
the topology defined by the (P)e/-filtration, is

isomorphic as topological ring to a quotient of the p-
adic completion " of R; it is noetherian.
In particular, if R is excellent, so is / since
is excellent by ([5]).

2. Ideas of proofs. 1) Since R, is a valua-
tion ring, the q)+-graded k,-algebra gr,R, has
the property that each of its homogeneous compo-
nents is a 1-dimensional vector space over k,. If
the residual extension is trivial, the same is true
over kR, and since the kR-algebra gr,R is a
graded subalgebra of gr,R,, each of its
homogeneous components is a kR-vector space of
dimension <_ 1. By an observation of Korkina

([3], see also [2]), this implies the result: taking a
(possibly countable) system of homogeneous
generators of the algebra gives a graded surjec-
tion kR[ (Ui)ii]-- gr,R once Ui is given the de-
gree of its image. The kernel is generated by
homogeneous polynomials, but any two terms of
such a polynomial have non zero kR-proportional
images, which shows that the kernel is generated
by binomials.

2) Let be a valuation of height one, i.e with
archimedian value group q)c R (see [10], Vol.
II). Assume first that is generated by m
rationally independent positive real numbers v,

vm. We use the Perron algorithm as ex-
pounded in ([9], B. I, p. 861), but with a some-
what different interpretation. The algorithm con-
sists in writing


