Complete Submanifolds with Parallel Mean Curvature in a Sphere

By LIU Ximin

Department of Applied Mathematics, Dalian University of Technology, China (Communicated by Heisuke HIRONAKA, M. J. A., Oct. 13, 1997)

Abstract: In this paper, we prove an intrinsic rigidity theorem for complete submanifolds with parallel mean curvature in a sphere, which generalize the results due to Alencar, do Carmo and Santos.

Key words: Parallel mean curvature; sphere; complete submanifold.

2

1. Introduction. Let M^n be an *n*-dimensional oriented manifold immersed in an (n + p)-dimensional unit sphere S^{n+p} , with mean curvature H and second fundamental form B. We put $\phi(X, Y) = B(X, Y) - \langle X, Y \rangle H$ for any tangent vector fields X and Y on M^n . Assume the mean curvature of M^n is parallel, we denote by B_H the square of the positive root of

$$x^{2} + \frac{n(n-2)}{\sqrt{n(n-1)}}|H|x - n(|H|^{2} + 1).$$

Alendar and do Carmo [1] proved that if M^n is compact, p = 1 and $|\phi|^2 \leq B_H$, then either $|\phi|^2 =$ 0 and M^n is totally umbilic or $|\phi|^2 = B_H$ and M^n is a Clifford torus or an H(r)-torus of appropriate radii. Later, Santos [3] generalized this result to submanifolds.

The purpose of this paper is to generalize the results of Alendar, do carmo and Santos to complete submanifolds. Following Santos [3] we denote by ϕ_H the bilinear map defined by

 $\phi_h(X, Y) = \langle \phi(X, Y), H \rangle,$

and by $B_{p,H}$ the function of p and H given by

$$B_{p,H} = \begin{cases} 1/(2 - 1/p), & \text{if } p = 1 \text{ or } h = 0\\ 1/(2 - (1/(p - 1))), & \text{otherwise.} \end{cases}$$

We denote $C_{p,H}$ by

(1)
$$C_{p,H} = B_{p,H}^{n} \{ n(1+|H|^2) - \frac{n(n-2)}{\sqrt{n(n-1)}} |\phi_H| \}.$$

The main result of the present paper is the following:

Theorem. Let M^n be a complete submanifold with parallel mean curvature $H \ (\neq 0)$ in S^{n+p} . Then either M^n is a totally umbilical sphere, or $\sup |\phi|^2 \ge C_{p,H}$. 2. Preliminaries. Let M^n be a submanifold of S^{n+p} . Choose a local orthonormal frame field $\{e_1, \ldots, e_{n+p}\}$ in S^{n+p} such that restricting to M^n , $\{e_1, \ldots, e_n\}$ are tangent to M^n . The mean curvature H of M^n is defined by

$$H = \frac{1}{n} \sum_{i=1}^{n} B(e_i, e_i),$$

and the square of the second fundamental form B is defined by

$$S = \sum_{i,j=1}^{n} |B(e_{i}, e_{j})|^{2}.$$

It is easy to see that the square length of the tensor ϕ is given by

$$|\phi|^2 = S - n|H|^2.$$

Now we assume that M^n is a subamnifold with parallel mean curvature H. From [1] and [3], we have

(2)
$$\frac{1}{2} \Delta |\phi|^{2} \ge |\phi|^{2} \{n(1 + H^{2}) - \frac{n(n-2)}{\sqrt{n(n-1)}} |\phi_{H}| - \frac{1}{B_{p,H}} |\phi|^{2} \},$$

where h_{ij}^{α} are the components of the second fundamental form and h_{ijk}^{α} are the covariant derivatives of h_{ij}^{α} .

The following two lemmas are important in this paper.

Lemma 1 [2]. Let M^n be a subamnifold in S^{n+p} , and let *Ric* denote the minimum Ricci curvature at each point. Then

$$Ric \geq \frac{n-1}{n} (-|\phi|^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} |H||\phi| + n(|H|^2 + 1)).$$

Proof. It follows immediately from the main theorem of [2] and the equation $|\phi|^2 = S - n|H|^2$.

Lemma 2 [4]. Let M^n be a complete

¹⁹⁹¹ Mathematics Subject Classification: 53C42, 53C40.