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1. Preliminaries. In [1], Louboutin obtained
a lower bound for class numbers of pure cubic
number fields and applied this bound to classify
all pure cubic fields of the form Q(ma+ 1)
whose class numbers are smaller than three. In
this paper, using Louboutin’s bound we classify
all pure cubic fields of Rudman-Stender type of
class number one.

Definition 1.1. Let d ma + r, where d,
m, r Z, with d, m > o, r I> 1 and d
cube-free. If r 3m then the field k--Q(d) is

called a pure cubic field of Rudman-Stender type.
Rudman and Stender proved
Theorem 1.2. Let k--Q(rn + r) be a

pure cubic field of Rudman-Stender type. Let 7 be
the fundamental unit of k and s r/(oo- m) a,

3
where oo- m + r. Then

with the following exceptions"

if (m, r) (2, 6), (I,3), (2,2), (3,1),
s and (5, 25),

r] /f (m, r) (2, 4).
Proof See [3]. [
Theorem 1.3. Let k be a pure cubic field.

Then

1/ dk 4
hkRk >-- logdk’ d-> 3"10,

where hk, d, and R are the class number, the abso-
lute value of dscriminant and the regulator of k, re-

spectively.

Proof See [1 ]. [-
2. Main theorems. In this section, we obtain

a lower bound for class numbers of pure cubic
fields of Rudman-Stender type. We apply this
bound to determine all pure cubic fields of
Rudman-Stender type of class number one.

Theorem 2.1: Let k be a pure cubic field of
Rudman- Stender type. Then
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1 1 / d 4h, _> - log(12d) --lg dk’ d -> 3.10,

where h,, and d are the class number and the abso-
lute value of discriminant of k, respectively.

Proof Set d= m + r. Let k- Q(d) be a
pure cubic field of Rudman-Stender type and

r/(oo--m) 3. Define a and b by means of
(a, b) 1 and d ab2. Then d, 3(ab)
d 27(ab) according as d 1 (mod 9) or

not. Thus dg 3d. Since e (w +mw + m)3/
r and w > m, we easily see that

e K 12d.
By Theorem 1. 2 we have

R K log e K log(12d).
where R is the regulator of k. From Theorem 1.
3 we get the desired lower bound for class num-
ber of k.

Theorem 2.2. There are exactly five pure
cubic fields of Rudman-Stender type of class number
o e,

Proof Set d= ms+ r. Let k Q() be a

pure cubic field of Rudman-Stender type. By
Theorem 2.1 we have h > 1 if d 1.05" 10.
Note that if m 72 then d 1.05 10. If
d K 1000, then we find exactly five d with

h 1, i.e., d= 2 if (m, r)= (2,- 6), (1,4),
or (2, 4), d= 5 if (m, r) (2, 3), d= 6
if (m, r) (2, 2), d= 10 if (m, r) (2,2)
or (5, -25), d= 12 if (m, r) (2,4) or

(3,- 9), d= 20 if (m, r) (2,12) or (5,75)
from the table in [2]. Thus to prove the theorem,
it is enough to show that if d > 1000, m K 71
and d < 1.05" 10, then h > 1. Using MATHE-
MATICA we know that there are only 26 pairs
of (m, r), i.e., (m, r) (10,25), (10,100),...,
(30,225), satisfying the above conditions. For
each case, computing the actual value of the re-
gulator we have even sharper lower bound than
Theorem 2.1 and easily show that its class num-

ber is greater than one. For example, we consider


