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1. Preliminaries. In [1], Louboutin obtained
a lower bound for class numbers of pure cubic
number fields and applied this bound to classif
all pure cubic fields of the form Q(,s/m3 +1)
whose class numbers are smaller than three. In
this paper, using Louboutin’s bound we classify
all pure cubic fields of Rudman-Stender type of
class number one.

Definition 1.1. Let d = m’ + 7, where d,
m,r<Z with d,m>0,|r|>1 and d
cube-free. If v|3m® then the field k = Q(/d) is
called a puve cubic field of Rudman-Stender type.

Rudman and Stender proved

Theorem 1.2. Let k= Q(,S/m3 +7) be a
pure cubic field of Rudman-Stender type. Let 1 be
the fundamental unit of k and e = r/(w — m)°,
where w = Jm® + r. Then

eE=n,
with the following exceptions:
n® if (m,n =2, —6), 1,3), 2,2), (3,1),
g = { and (5, — 25),
n’if m,») = (2, —4).

Proof. See [3]. O

Theorem 1.3. Let k be a pure cubic field.
Then
1 d,

hRy = 9y logd,’
where h,, d, and R, ave the class number, the abso-
lute value of discriminant and the regulator of k, re-
spectively.

Proof.  See [1]. O

2. Main theorems. In this section, we obtain
a lower bound for class numbers of pure cubic
fields of Rudman-Stender type. We apply this
bound to determine all pure cubic fields of
Rudman-Stender type of class number one.

Theorem 2.1. Let k be a pure cubic field of
Rudman- Stender type. Then

d, = 3-10%,
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“7 9 og(124?) V logd, 7t

where h,, and d, are the class number and the abso-
lute value of discriminant of k, respectively.

Proof. Set d=m’+ r. Let k = Q(Vd) be a
pure cubic field of Rudman-Stender type and
¢ = r/(w — m)®. Define a and b by means of
(@, b) =1 and d = ab>. Then d, = 3(ab)? or
d, = 27(ab)? according as d = £ 1 (mod 9) or
not. Thus d, = 3d. Since ¢ = (0* + maw + m»°/
r’ and V2w > m, we easily see that

e < 1242,
By Theorem 1. 2 we have
R, <loge < log(12d)).
where R, is the regulator of k. From Theorem 1.
3 we get the desired lower bound for class num-
ber of k. O

Theorem 2.2. There are exactly five pure

cubic fields of Rudman- Stender type of class number

ome, e, QGF2), QG{5), Q{F6), QF10),
Q(12).

Proof. Set d=m’+ 7. Let k = Q(/d) be a
pure cubic field of Rudman-Stender type. By
Theorem 2.1 we have k, > 1 if d, = 1.05-10°
Note that if m = 72 then d, = 1.05 - 10°. If
d < 1000, then we find exactly five d with
h, =1, ie, d=2if (m,r) = (2, —6), (1,4),
or 2,—4),d=5if m,n» =2, —3),d=6
if m,r) =@, —2),d=10 if (m, » = (2,2)
or (5, —25),d=12 if (m,» = (2,4) or
3, —9),d=20if (m, r = (2,12) or (5,75)
from the table in [2]. Thus to prove the theorem,
it is enough to show that if d > 1000, m < 71
and d, < 1.05-10° then 4, > 1. Using MATHE-
MATICA we know that there are only 26 pairs
of (m, r), ie., (m, ») = (10,25), (10,100),.. .,
(30,225), satisfying the above conditions. For
each case, computing the actual value of the re-
gulator we have even sharper lower bound than
Theorem 2.1 and easily show that its class num-
ber is greater than one. For example, we consider



