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In this paper we discuss explicit calculations
of homology and cohomology of a Lie superalgeb-
ra. Complete results fore g[(1,1) and [(2,1) are
given in case the dimensions of representations
are finite. Our result implies that for any n

Z> o, there exists a finite-dimensional irreducible

9-module V such that Hn(9, V)4: {0}, contrary
to the case of finite-dimensional Lie algebras.
This means that the Poincar duality, which is
proved by S.Chemla [1] under a certain restric-
tive condition, does not hold in general in our
case. For definitions and notations we mainly fol-
low Kac [61.

1. Generalities. Homology groups I-In(g, V)
of a Lie superalgebra g--flg7 with coeffi-
cients in its representation space V are defined
similarly as for a Lie algebra (cf. [7, p. 283]) and
they can be obtained as KerOn_l/Im0n in the
following complex (B, 0):

O---Bo---B---B--B--’", B. A"@ V,

On_l(x A A Xn @ v)

2 (-- 1) ’+’;X1 A ]... A Xn @X,v
+ E (-- 1) k+t+’k+"+k’ [X

k<l

AX1A ’’’ 1’’. AXn@v
where X , homogeneous, v
"= de9 X,, r/, e,(l + +
-+-""-+-n), and the symbol indicates a term
X, to be omitted (cf. [8]). The Grassmann algebra
A g here is defined as the quotient of the tensor
algebra of g by a two-sided ideal generated by
{X@Y+ (--1)lxlllY@XlX, Y,; homoge-
neous} and it is a fl-module through a natural ac-
tion:

X.(Xx A iXn)
(- 1)IXl(+"’+’-)X A A [X, Xi] A A X,.

Then Bn’s are g-modules with on(X)(O@ v)=
XO@ v + (--1) lx ll O @ Xv (X g, O X1A
AXn An

fl, [0[ 1 + + e, v V) This

action commutes with the derivation 0, that is,

XoO. O._oX.
We appeal to the following lemmas to calcu-

late the homology and the cohomology.
Lemma 1. Let O be a subalgebra of g such

that its natural representation Ohio on the n-th
chain B are all semisimple. Then, the homology
I-In(, V)can be obtained from a subcomplex (Bq,

IBm), where the n-th chain B, for B is the sub-
space of q-invariants in Bn.

The space V* "-Home(V, C) has a natu-
ral -module structure.

Lemma 2 (Duality). Let be a Lie super-
algebra and V a -module. Assume that and V
are both finite-dimensional, then there are -module
isomorphisms between homology groups and cohomol-
ogy groups as

H" (, V*) - H. (, V) *.
2. Case of g[(1,1). Fix a basis of the Lie

superalgebra g- g[(1, 1) as follows:

H=- 0 --1 01’

X=
00 1 0

The elements H and C generate a Cartan sub-
algebra, which .is equal to the even part g of g in
this simplest case. Put gl CX and g-1 = CY.
Then the odd part is g7 = 91 + 9-1, and this
gives a Z-grading of g together with go flY. Let
L(A) "= Cvo be a one-dimensional representation
of gg given by Hvo =/lvo, Cvo cvo(2, c C)
and A denote a pair (,t, c). For a subalgebra

P’= g+gl, we extend L(A) as a p-module
through a trivial action of X, Then the induced
module V(A) "= (g) @,L(A) defines a repre-
sentation of 9. V(A) is irreducible if and only if
c =/= 0.

We calculate the homology Hn(g, V(A)),
which is isomorphic to Hn(p, L(A)) by Shapiro’s
lemma on induced modules (cf. [7]). Put X<)= X
AXA A X Agand


