Explicit Representation of Fundamental Units of Some Quadratic Fields

By Koshi TOMITA
Graduate School of Human Informatics, Nagoya University
(Communicated by Shokichi Iyanaga, M. J. A., Feb. 13, 1995)

1. Introduction. Explicit form of the fundamental unit of real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ is not well-known except for real quadratic fields of Richaud-Degert type.

In this paper, for all real quadratic fields $\boldsymbol{Q}(\sqrt{d})$ such that d is a positive square-free integer congruent to $1 \bmod 4$ and the period k_{d} in the continued fraction expansion of the quadratic irrational number $\omega_{d}=(1+\sqrt{d}) / 2$ in $\boldsymbol{Q}(\sqrt{d})$ is equal to 3 , we describe explicitly T_{d}, U_{d} in the fundamental unit $\varepsilon_{d}=\left(T_{d}+U_{d} \sqrt{d}\right) / 2(>1)$ of $\boldsymbol{Q}(\sqrt{d})$ and d itself by using two parameters l, r appearing in the continued fraction expansion of ω_{d}. Finally, as an application of this theorem, we provide a result on class number one problem for real quadratic fields and on Yokoi's invariant n_{d}.

For the set $I(d)$ of all quadratic irrational numbers in $\boldsymbol{Q}(\sqrt{d})$, we say that α in $I(d)$ is reduced if $\alpha>1,-1<\alpha^{\prime}<0$ (α^{\prime} is the conjugate of α with respect to \boldsymbol{Q}), and denote by $R(d)$ the set of all reduced quadratic irrational numbers in $I(d)$. Then, it is well-known that any number α in $R(d)$ is purely periodic in the continued fraction expansion and the denominator of its modular automorphism is equal to the fundamental unit ε_{d} of $\boldsymbol{Q}(\sqrt{\boldsymbol{d}})$, and that the norm of ε_{d} is $(-1)^{k_{d}}$ (see, for example, [2] p. 205, 215). Moreover the continued fraction with period k is generally denoted by $\left[a_{0}, \overline{a_{1}, \ldots, a_{k}}\right]$, and $[x]$ means the greatest integer not greater than x.

Now, for any square-free positive integer d congruent to $1 \bmod 4$, we put $d=a^{2}+b, 0<b$ $\leq 2 a(a, b \in Z)$. Here, since $\sqrt{d}-1<a<\sqrt{d}$, both integers a and b are uniquely determined by d. Then, our main theorem is as follows:

Theorem. For a square-free positive integer d congruent to $1 \bmod 4$, we assume $k_{d}=3$. Then, in the case that a is odd,

$$
\omega_{d}=[(a+1) / 2, \overline{l, l, a}]
$$

and

$$
\left(T_{d}, U_{d}\right)=\left(\left(l^{2}+1\right)^{2} r+l\left(l^{2}+3\right), l^{2}+1\right)
$$

hold for two positive integers l, r such that $a=$

$$
\begin{aligned}
& \left(l^{2}+1\right) r+l . \\
& \text { Moreover in this case, it holds } \\
& \quad d=\left(l^{2}+1\right)^{2} r^{2}+2 l\left(l^{2}+3\right) r+l^{2}+4 . \\
& \quad \text { In the case that a is even, } \\
& \omega_{d}=[a / 2,1,1, a-1],\left(T_{d},\right. \\
& \quad \begin{array}{l}
\left.U_{d}\right)=(2 a, 2) \\
\text { and } d=a^{2}+1
\end{array}
\end{aligned}
$$

hold.
In order to prove this theorem, we need several lemmas.

Lemma 1. For a square-free positive integer $d>5$ congruent to 1 modulo 4 , we put $\omega=(1+$ $\sqrt{d}) / 2, q_{0}=[\omega]$ and $\omega_{R}=q_{0}-1+\omega$. Then $\omega \notin R(d)$, but $\omega_{R} \in R(d)$ holds. Moreover for the period k of ω_{R}, we get $\omega_{R}=\left[\overline{2 q_{0}-1, q_{1}, \ldots, q_{k-1}}\right]$ and $\omega=\left[q_{0}, \overline{\left.q_{1}, \ldots, q_{k-1}, 2 q_{0}-1\right]}\right.$. Furthermore, let $\omega_{R}=\left(P_{k} \omega_{R}+P_{k-1}\right) /\left(Q_{k} \omega_{R}+Q_{k-1}\right)=\left[2 q_{0}\right.$ $\left.-1, q_{1}, \ldots, q_{k-1}, \omega_{R}\right]$ be a modular automorphism of ω_{R}, then the fundamental unit ε_{d} of $\boldsymbol{Q}(\sqrt{d})$ is given by the following formula:

$$
\begin{aligned}
& \varepsilon_{d}=(T+U \sqrt{d}) / 2>1 \\
& T=\left(2 q_{0}-1\right) Q_{k}+2 Q_{k-1}, U=Q_{k}
\end{aligned}
$$

where Q_{i} is determined by $Q_{0}=0, Q_{1}=1, Q_{i+1}$ $=q_{i} Q_{i}+Q_{i-1},(i \geq 1)$.

Proof. Denote by $N m$ and $T r$ the norm and the trace respectively. Then $\omega_{R}=\left(2 q_{0}-1+\right.$ $\sqrt{d}) / 2$ belongs to $I(d)$, because ω_{R} is a root of the equation $X^{2}-T_{r}\left(\omega_{R}\right) X+N m\left(\omega_{R}\right)=0$ and the discriminant of this equation is $\operatorname{Tr}\left(\omega_{R}\right)^{2}-$ $4 N m\left(\omega_{R}\right)=d$. Moreover since $\omega_{R}{ }^{\prime}=[\omega]-\omega$ >-1 and $2 q_{0}-1<\sqrt{d}$, we get $0>\omega_{R}{ }^{\prime}>-$ 1. Hence ω_{R} belongs to $R(d)$. Since $\left[\omega_{R}\right]=$ $[[\omega]-1+\omega]=2 q_{0}-1$ and ω_{R} is purely periodic, ω_{R} and ω have expansions described in this Lemma respectively. Since $Q_{k} \omega_{R}+Q_{k-1}$ is the fundamental unit of $\boldsymbol{Q}(\sqrt{d})$ with norm $(-1)^{k}$ (see, for example, [2] p. 215), $\varepsilon_{d}=Q_{k}\left\{q_{0}-1+\right.$ $(1+\sqrt{d}) / 2\}+Q_{k-1}=\left\{\left(2 q_{0}-1\right) Q_{k}+2 Q_{k-1}+\right.$ $\left.Q_{k} \sqrt{d}\right\} / 2$. Thus, the proof of Lemma 1 was completed.

We apply the recurrence formula in [1] to ω_{R}, and get useful parameters essentially connected with partial quotients of the continued

