The Restriction of $A_{\mathfrak{q}}(\lambda)$ to Reductive Subgroups II

By Toshiyuki KOBAYASHI

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1995)

§ 1. Introduction. In this paper we continue the investigation of the restriction of irreducible unitary representations of real reductive groups, with emphasis on the discrete decomposability. We recall that a representation π of a reductive Lie group G on a Hilbert space V is G-admissible if (π, V) is decomposed into a discrete Hilbert direct sum with finite multiplicities of irreducible representations of G. The same terminology is used for a (g, K)-module on a pre-Hilbert space, if its completion is G-admissible.

Let H be a reductive subgroup of a real reductive Lie group G, and (π, V) an irreducible unitary representation of G. The restriction $(\pi_{|H},$ V) is decomposed uniquely into irreducible unitary representations of H, which may involve a continuous spectrum if H is noncompact. In [5],[6], we have posed a problem to single out the triplet (G, H, π) such that the restriction of $(\pi_{|H}, V)$ is *H*-admissible, together with some application to harmonic analysis on homogeneous spaces. The purpose of this paper is to give a new insight of such a triplet (G, H, π) from view points of algebraic analysis. In particular, we will give a sufficient condition on the triplet (G, H, π) for the H-admissible restriction as a generalization of [5], [6] to arbitrary H, and also present an obstruction for the H-admissible restriction.

§ 2. A sufficient condition for discrete decomposability. Let K be a compact Lie group. We write \mathbf{t}_0 for the Lie algebra of K, and \mathbf{t} for its complexification. Analogous notation is used for other groups. Take a Cartan subalgebra \mathbf{t}_0^c of \mathbf{t}_0 . The weight lattice L in $\sqrt{-1}(\mathbf{t}_0^c)^*$ is the additive subgroup of $\sqrt{-1}(\mathbf{t}_0^c)^*$ consisting of differentials of the weights of finite dimensional representations of K. Let $\overline{C} \subset \sqrt{-1}(\mathbf{t}_0^c)^*$ be a dominant Weyl chamber. We write K_0 for the identity component of K, and $\widehat{K_0}$ for the unitary dual of K_0 . The Cartan-Weyl theory of finite dimensional representations establishes a bijection:

$$L \cap \overline{C} \xrightarrow{\sim} K_0, \lambda \mapsto F(K_0, \lambda).$$

Suppose X is a K-module (possibly, of infinite dimension) which carries an algebraic action of K. The K_0 -multiplicity function of X is given by

$$m \equiv m_X : L \cap C \to N \cup \infty,$$

$$m(\lambda) := \dim \operatorname{Hom}_{K_0}(F(K_0, \lambda), X).$$

The asymptotic K-support $T(X) \subset \overline{C}$ was introduced in [3] as follows:

 $S(X) := \{ \lambda \in L \cap \overline{C} : m_X(\lambda) \neq 0 \},\$

 $T(X) := \{ \lambda \in \overline{C} : V \cap S(X) \text{ is not relatively} \\ \text{compact for any open cone } V \text{ containing } \lambda \}.$

Hereafter we assume a growth condition on m_X : there are constants A, R > 0 such that (2.1) $m_X(\lambda) \le A \exp(R|\lambda|)$ for any $\lambda \in L \cap \overline{C}$. This condition assures that the character of the representation X is a hyperfunction on K, whose singularity spectrum we can estimate in terms of T(X).

Suppose H is a closed subgroup of K. Let $\operatorname{pr}_{K \to H} : \mathfrak{k}^* \to \mathfrak{h}^*$ be the projection dual to the inclusion of Lie algebras $\mathfrak{h} \hookrightarrow \mathfrak{k}$. Put $\mathfrak{h}^{\perp} := \operatorname{Ker}(\operatorname{pr}_{K \to H} : \mathfrak{k}^* \to \mathfrak{h}^*)$. We set

(2.2) $\overline{C}(\mathfrak{h}) := \overline{C} \cap \operatorname{Ad}^*(K)\mathfrak{h}^{\perp} \subset \sqrt{-1}(\mathfrak{t}_0^c)^*.$ Note that $\overline{C}(\mathfrak{k}) = \{0\}$ and $\overline{C}(0) = \overline{C}.$

Theorem 2.3. Let X be a K-module satisfying (2.1). If a closed subgroup H of K satisfies $T(X) \cap \overline{C}(\mathfrak{h}) = \{0\},$

then the restriction $X_{|H}$ is H-admissible.

Now, let us apply Theorem (2.3) to some standard (g, K)-modules. Suppose that G is a real reductive linear Lie group and that K is a maximal compact subgroup of G. A dominant element $a \in \sqrt{-1}$ \mathfrak{t}_0^c defines a θ -stable parabolic subalgebra $\mathfrak{q} = \mathfrak{l} + \mathfrak{u}$, where \mathfrak{l} , \mathfrak{u} are the sum of eigenspaces of $\mathfrak{ad}(a)$ with 0, positive eigenvalues, respectively. Let L be the centralizer of a in G. Zuckerman introduced the cohomological parabolic induction $\mathfrak{R}_{\mathfrak{q}}^{\mathfrak{f}} \equiv (\mathfrak{R}_{\mathfrak{q}}^{\mathfrak{g}})^{\mathfrak{f}}$ $(\mathfrak{f} \in \mathbb{N})$, which is a covariant functor from the category of metaplectic $(\mathfrak{l}, (L \cap K)^{\sim})$ -modules to that of (\mathfrak{g}, K) -modules, as a generalization of the Borel-Weil-Bott con-