Wavelet Transforms Associated to a Principal Series Representation of Semisimple Lie Groups. I

By Takeshi KAWAZOE

Department of Mathematics, Keio University (Communicated by Kiyosi ITÔ, M. J. A., Sept. 12, 1995)

1. Introduction. Let G be a locally compact Lie group and π a continuous representation of G on a Hilbert space \mathcal{H} . Let \mathcal{H}_{∞} denote the space of C^{∞} -vectors in \mathcal{H} , endowed with a natural Sobolev-type topology, and $\mathcal{H}_{-\infty}$ the dual of \mathcal{H}_{∞} endowed with the strong topology. We denote the corresponding representation on $\mathcal{H}_{-\infty}$ by the same letter π . Let S be a subset of G and ds a measure on S. A vector $\psi \in \mathcal{H}_{-\infty}$ is said to be S-strongly admissible for π if there exists a positive constant $c_{S,\psi}$ such that

(1)
$$\int_{S} |\langle f, \pi(s)\psi \rangle_{\mathscr{H}}|^{2} ds = c_{S,\psi} ||f||_{\mathscr{H}}^{2}$$
for all $f \in \mathscr{H}_{\infty}$,

where $\langle \cdot, \cdot \rangle_{\mathscr{H}}$ and $\| \cdot \|_{\mathscr{H}}$ denote the inner product and the norm of \mathscr{H} respectively. We easily see that $\psi \in \mathscr{H}_{-\infty}$ is S-strongly admissible for π if and only if, as a functional on \mathscr{H}_{∞} ,

(2)
$$f = c_{s,\phi}^{-1} \int_{s} \langle f, \pi(s)\psi \rangle_{\mathscr{H}} \pi(s)\psi ds$$
for all $f \in \mathscr{H}_{\infty}$.

We call $\langle f, \pi(s)\psi \rangle$ the wavelet transform of f associated to (G, π, S, ϕ) in the sense that, by specializing (G, π, S, ψ) , the above formula yields a group theoretical interpretation of various well-known wavelet transforms. For example, we first let S = G, ds = dg, a Haar measure of G, and (π, \mathcal{H}) a square-integrable representation of G, that is, π is an irreducible unitary representation satisfying $0 < \int_{C} |\langle \phi, \phi \rangle$ $|\pi(g)\psi\rangle|^2 dg < \infty$ for all ϕ, ψ in \mathcal{H} . Then π is a discrete series of G and every $\phi \in \mathcal{H}$ is a G-strongly admissible vector for π (see [3]). The Gabor transform and the Grossmann-Morlet transform correspond to the Weyl-Heisenberg group and the one-dimensional affine group respectively (cf. [7, §3]). Next let H be a closed subgroup of G and π a discrete series of G/H.

Then there exists an *H*-invariant distribution vector $\psi \in \mathscr{H}_{-\infty}$ for which (2) holds by replacing *S* and *ds* with *G*/*H* and a *G*-invariant measure on *G*/*H* respectively (cf. [12]). We can treat this case in our scheme, because the integral over *G*/*H* can be regarded as the one over *S* = $\sigma_0(G/H)$ where $\sigma_0: G/H \to G$ is a flat section of the fiber bundle $G \to G/H$.

These considerations are based on the existence of the discrete series of G or G/H, so it seems to be difficult to unfold the same process in the case that G has no such representations. One approach to treat the case is to find a non flat Borel section $\sigma: G/H \rightarrow G$. In the case of the Poincaré group and the affine Weyl-Heisenberg group, Ali, Antoine, and Gazeau [1] and Kalisa and Torrésani [10] respectively find a non square-integrable reprepentation (π, \mathcal{H}) , a ψ in \mathcal{H} , and a non flat section σ such that (2) holds for π , ψ , and $S = \sigma(G/H)$. In this paper we shall investigate a transform associated to a principal series representation of noncompact semisimple Lie groups and we obtain a generalization of the Grossmann-Morlet transform and the Carderón identity. A transform associated to the analytic continuation of the holomorphic discrete series and its limit will be treated in the forthcoming paper [9].

2. Principal series representations. Let G be a noncompact connected semisimple Lie group with finite center and $g = t + a_0 + n_0$ an Iwasawa decomposition of the Lie algebra g of G. According to the process in [4, §6], we shall define a standard parabolic subalgebra $\mathfrak{p} = \mathfrak{m} + \mathfrak{a}$ $+ \mathfrak{n}$. Let Σ be the set of roots of $(\mathfrak{g}, \mathfrak{a}_0)$ positive for \mathfrak{n}_0 and Σ_0 the subset of Σ consisting of simple roots. For each $F \subset \Sigma_0$ we set $\mathfrak{a} = \mathfrak{a}_F =$ $\{H \in \mathfrak{a}_0; \alpha(H) = 0 \text{ for all } \alpha \in F\}$ and $\mathfrak{n} = \mathfrak{n}_F$ $= \sum_{\alpha \in \Sigma \setminus \Sigma_F} \mathfrak{g}_{\alpha}$ where \mathfrak{g}_{α} is the root space corresponding to α . Then the parabolic subalgebra \mathfrak{p} of g is given by $\mathfrak{p} = \mathfrak{m} + \mathfrak{a} + \mathfrak{n}$ where $Z_t(\mathfrak{a}) = \mathfrak{m}$

¹⁹⁹¹ Mathematics Subject Classification. Primary 22E30; Secondary 42C20.