Seminear-rings Characterized by their &-ideals. II

By Javed AHSAN

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals, Saudi Arabia (Communicated by Shokichi IYANAGA, M. J. A., June 13, 1995)

This paper is a continuation of the author's earlier paper [1]. For undefined terms and notations used here we refer to [1]. In section 1 we describe some properties of the lattice of \mathcal{S} ideals of a distributively generated SI-seminearring (cf. [1]). In section 2 we define a topology in the space of all prime \mathcal{S} -ideals in a distributively generated SI-seminear-ring, and show that the subset consisting of all minimal prime \mathcal{S} ideals forms a Hausdorff space. Below we announce our results, whose details will appear elsewhere. Only some indications of proof will be given to Theorems 3, 4.

1. Distributively generated SI-seminearrings. Throughout this section R will denote a d.g. seminear-ring with an absorbing zero as defined in [1]. As remarked in [1], the product ABof \mathscr{S} -ideals A and B of R is an \mathscr{S} -ideal. Moreover, for each family of \mathscr{S} -ideals $\{A_i : i \in I\}$ of R, the sum $\sum_{i \in I} A_i$ as defined in [1], is the unique minimal member of the family of all \mathscr{S} -ideals of R containing the \mathscr{S} -ideals $\{A_i : i \in I\}$; and $\bigcap_{i \in I} A_i$ is the unique maximal member of the family of all \mathscr{S} -ideals of R contained in the \mathscr{S} -ideals $\{A_i : i \in I\}$. Using these facts, we may state Propositions 2.2 and 2.3 given in [1] in the following forms.

Proposition 1. The following assertions are equivalent:

(1) R is SI.

(2) For each pair of \mathcal{S} -ideals A, B of $R, A \cap B = AB$.

(3) The set of S-ideals of R (ordered by inclusion) is a semilattice (\mathscr{L}_R , Λ) with $A\Lambda B = AB$ for each pair of S-ideals A, B of R.

Proposition 2. The following assertions are equivalent:

(1) R is SI.

(2) The set of all S-ideals of R (ordered by inclusion) forms a complete lattice \mathcal{L}_R under the sum and intersection of S-ideals with $I \cap J = IJ$ for each pair of S-ideals I, J of R.

We also have:

Proposition 3. The following assertions are equivalent:

(1) For each pair of \mathcal{S} -ideals A, B of $R, A \cap B = AB$.

(2) R is SI.

(3) For each pair of \mathscr{S} -ideals A, B of R, $B \cap A = AB$.

(4) For each pair of \mathscr{S} -ideals A, B of R, $A \cap (A^{-1}B) = A \cap B$ ($A^{-1}B = \{r \in R : ra \in B \text{ for all } a \in A\}$).

Next we show that the lattice \mathscr{L}_R described in Proposition 2, is a (complete) Brouwerian and hence distributive lattice. A lattice \mathscr{L} is called *Brouwerian* if for any $a, b \in \mathscr{L}$, the set of all $x \in$ L satisfying $a \wedge x \leq b$ contains a greatest element c, the *pseudo-complement* of a relative to b.

Proposition 4. If R is an SI-seminear-ring, then the lattice \mathcal{L}_R is distributive.

Analogous to the notion of prime ideals in near-ring theory ([2], p. 62), we call an \mathscr{S} -ideal P of a seminear-ring R prime if $IJ \subseteq P \Rightarrow I \subseteq P$ or $J \subseteq P$ holds for all \mathscr{S} -ideals I, J of R; P is called completely prime if for $a, b \in R, ab \in P$ $\Rightarrow a \in P$ or $b \in P$; P is minimal prime if P is a minimal element of the set of prime \mathcal{S} -ideals of R. An \mathscr{S} -ideal K of R is semiprime if for all \mathscr{S} -ideals I of R, $I^2 \subseteq K \Rightarrow I \subseteq K$; K is completely semiprime if for $a \in R$ and n a positive integer, $a^n \in K \Rightarrow a \in K$. Furthermore, an \mathscr{S} -ideal Q of a seminear-ring R is called *irreducible* (strongly irreducible) if $I \cap J = Q \Rightarrow I = Q$ or $J = Q(I \cap J \subseteq Q \Rightarrow I \subseteq Q \text{ or } J \subseteq Q)$ holds for all \mathscr{S} -ideals I, J or R. Thus any prime \mathscr{S} -ideal is strongly irreducible and any strongly irreducible \mathscr{S} -ideal is irreducible. The following proposition shows that the concepts of prime, irreducible and strongly irreducible &-ideals coincide for SI-seminear-rings.

Proposition 5. Let R be an SI-seminear-ring. Then the following assertions for an \mathscr{S} -ideal P of R are equivalent: