96. On the Rank of an Elliptic Curve in Elementary 2-extensions

By Masanari KIDA

Department of Mathematics, The Johns Hopkins University, U. S. A. (Communicated by Shokichi IYANAGA, M. J. A., Dec. 13, 1993)

1. Let E be an elliptic curve (i.e., an abelian variety of dimension one) defined over an algebraic number field k. For any finite field extension K of k, we denote by E(K) the group of K-rational points of E. We define the Mordell-Weil rank over K of E by

$$\operatorname{rank}(E;K) = \dim_{\mathbf{Q}} E(K) \otimes_{\mathbf{Z}} \mathbf{Q},$$

which is known to be finite.

The extension K/k is called an *elementary* 2-extension if it is a (Galois) (pro-) 2-extension with the Galois group of exponent 2.

This note grew out of an effort to generalize Ono's theorem [7] on the relative Mordell-Weil rank (his $E(\kappa)$ is our E_{κ}) and its aim is to construct elliptic curves whose Mordell-Weil rank becomes infinite in a tower of elementary 2-extensions.

We should note here that Kurčanov ([4],[5]) constructed elliptic curves defined over Q whose ranks are infinite or stable in a \mathbb{Z}_p -extension based on the theory of Mazur.

2. Let k be an algebraic number field and suppose we are given a (finite or infinite) subset $\Sigma = \{d_{\lambda}\}_{{\lambda} \in \Lambda}$ of $k^{\times}/(k^{\times})^2$. We can assign a quadratic extension $k_{\lambda} = k(\sqrt{d_{\lambda}})$ to each d_{λ} in the set Σ .

For any non-empty finite subset S of $\boldsymbol{\varLambda}$, we set

$$k_S = k\left(\sqrt{\prod_{i \in S} d_i}\right) \text{ and } k(S) = k(\{\sqrt{d_i} \mid i \in S\}).$$

We call the set Σ a *primitive set* if $[k(S):k]=2^{\#S}$ holds for all finite subsets S of Σ . If Σ is primitive, then the fields k_T 's $(T \neq \phi, T \subseteq S)$ are exactly $2^{\#S}-1$ different quadratic extensions over k in k(S). For an elliptic curve E defined over k, we denote by E^S the twist of E by the quadratic character of k_S/k .

The following proposition is the key to our construction.

Proposition 1. Suppose that $\Sigma = \{d_{\lambda}\}_{{\lambda} \in \Lambda}$ is primitive and let S be any finite subset of Λ . Then we have

$$rank(E; k(S)) = \sum_{T \subseteq S} rank(E^T; k),$$

where the sum is taken for all subsets T of S.

Proof. Put $S = \{1, 2, ..., m\}$ and $S' = \{1, 2, ..., m-1\}$. When m = 1, the proposition is classical (for instance, see [1]). It is easy to see that [k(S):k(S')] = 2 and $k(S) = k(S')(\sqrt{d_m})$. Therefore we obtain

$$rank(E; k(S)) = rank(E; k(S')) + rank(E^{(m)}; k(S'))$$