92. On the Local Regularity of Solutions to the Simultaneous Relations Characterizing the Supporting Functions of Convex Curves of Constant Angle

By Shigetake Matsulra
RIMS, Kyoto University
(Communicated by Kiyosi ITÔ, M. J. A., Dec. 13, 1993)

Abstract

We shall define a curve of constant angle $\alpha, 0<\alpha<\pi$ in the plane \boldsymbol{R}^{2}. This curve is a closed convex curve parametrized by $\theta \in \boldsymbol{T}$ $=\boldsymbol{R} / 2 \pi \boldsymbol{Z}$ and characterized by a C^{1} function $p(\theta)$ called the supporting function. We shall show that $\ddot{p}(\theta)$, the second derivative of $p(\theta)$ in the sense of distributions of L. Schwartz, belongs to L^{∞}. This result is the best possible one if the angle α is general.

Key words: local regularity; supporting function.

1. Characteristic function χ_{α} and modified characteristic function $\tilde{\chi}_{\alpha}$. Let α be a given angle $0<\alpha<\pi$. Put $\hat{\alpha}=\pi-\alpha$. We use the notations
(1.1) $\quad c_{1}(\alpha)=\sin \alpha, c_{2}(\alpha)=\cos \alpha, \tilde{c}_{1}(\alpha)=\sin \alpha / 2, \tilde{c}_{2}(\alpha)=\cos \alpha / 2$ and we omit the variable as far as there is no confusion. Let $\Omega_{\alpha}=\min \left\{\tilde{c}_{1}, \tilde{c}_{2}\right\}$. The open intervals I_{α} and J_{α} are defined as follows:

$$
J_{\alpha}= \begin{cases}I_{\alpha}=\left(-\Omega_{\alpha}, \Omega_{\alpha}\right) \\ \left(0, c_{1}\right) & \text { for } 0<\alpha \leq \pi / 2 \tag{1.3}\\ \left(-c_{2}, 1\right) & \text { for } \pi / 2 \leq \alpha<\pi\end{cases}
$$

The characteristic function χ_{α} and the modified characteristic function $\tilde{\chi}_{\alpha}$ are defined by the formulas

$$
\begin{gather*}
\chi_{\alpha}(t)=c_{1}\left(1-t^{2}\right)^{1 / 2}-c_{2} t, t \in J_{\alpha} \tag{1.4}\\
\tilde{\chi}_{\alpha}(s)=\tilde{c}_{1}\left(1-s^{2}\right)^{1 / 2}-\tilde{c}_{2} s, s \in I_{\alpha} \text { or } s \in J_{\alpha} .
\end{gather*}
$$

We state some properties of these functions without proofs.
Proposition 1.1. χ_{α} maps J_{α} onto J_{α} and is strictly monotone decreasing. χ_{α} has the only one fixed point \tilde{c}_{1}. Its inverse mapping χ_{α}^{-1} coincides with $\chi_{\alpha} \cdot \tilde{\chi}_{\alpha}$ maps J_{α} onto I_{α} and is strictly monotone decreasing. $\tilde{\chi}_{\alpha}$ maps \tilde{c}_{1} to 0 . Its inverse mapping $\tilde{\chi}_{\alpha}^{-1}$ has the same expression as $\tilde{\chi}_{\alpha}$.
$\tilde{\chi}_{\alpha}$ has the linearization effect on χ_{α} as follows:
Proposition 1.2. If w belongs to I_{α}, p belongs to J_{α}, and $w=\tilde{\chi}_{\alpha}(p)$, then $\tilde{\chi}_{\alpha}\left(\chi_{\alpha}(p)\right)=-w$.
2. Curves of constant angle α. Let C be the circle of radius r with the center at the origin of the plane \boldsymbol{R}^{2}, and call it the director circle. (This terminology comes from the classical example of ellipses, that is, $\alpha=\pi / 2$.) Hereafter we assume $r=1$, without loss of generality. Let A be a figure contained in C. A figure simply means here a subset of \boldsymbol{R}^{2}. For a point P on C, we put

$$
C(P ; A)=\{\text { ray } ; \text { starting from } P, \text { passing through a point of } A\}
$$

