88. Euler Characteristics of Groups and Orbit Spaces of Free G-complexes

By Toshiyuki AKITA

Department of Mathematics, Osaka Unisersity (Communicated by Heisuke HIRONAKA, M. J. A., Dec. 13, 1993)

Abstract: Let Γ be a group of finite homological type, X a finite dimensional, free Γ -complex such that $H_*(X, \mathbb{Z})$ is finitely generated. We proved that $H_*(X/\Gamma, \mathbb{Z})$ is finitely generated, and $\chi(X/\Gamma) = \chi(\Gamma) \cdot \chi(X)$, where $\chi(\Gamma)$ is the Euler characteristic of a group Γ .

Key words: Topological transformation groups; Euler characteristics of groups.

Let Γ be a discrete group. By a Γ -complex we will mean a CW-complex X together with an action of Γ on X which permutes the cells. A Γ -complex X is said to be *free* if the action of Γ freely permutes the cell of X. This note attempts to provide a formula concerning the Euler characteristics of a finite dimensional, free Γ -complex X and of the orbit space X/Γ . Such a formula is well-known for finite groups [3, p. 245]:

Theorem 1. Let G be a finite group, X a finite dimensional free G-complex such that $H_*(X, \mathbb{Z})$ is finitely generated. Then $H_*(X/G, \mathbb{Z})$ is finitely generated, and

$$\chi(X) = |G| \cdot \chi(X/G).$$

On the other hand, let Γ be a fundamental group of a finite aspherical complex $B\Gamma$. Then we see that $H_*(X/\Gamma, \mathbb{Z})$ is finitely generated, and $\chi(X/\Gamma)$. $= \chi(B\Gamma) \cdot \chi(X)$. This follows from the product formula of Euler characteristics for fibrations applied to the Borel construction $X \to E\Gamma \times_{\Gamma} X \to$ $B\Gamma$, where $E\Gamma$ is the universal cover of $B\Gamma$, and from the fact that $H_*(E\Gamma \times_{\Gamma} X, \mathbb{Z}) \cong H_*(X/\Gamma, \mathbb{Z})$. We will unify and extend these formulae by means of the Euler characteristics of groups.

The Euler characteristics of abstract groups has been studied by a number of authors under different conditions. We employ the one developed in Brown's book [3]. Recall that Γ is a group of finite homological type if (i) Γ is a group of finite virtual cohomological dimension (written vcd $\Gamma < \infty$) and (ii) for any $\mathbb{Z}\Gamma$ -module M which is finitely generated as a \mathbb{Z} -module, $H_n(\Gamma, M)$ is finitely generated for all n. A group Γ is of finite homological type if and only if a subgroup of finite index is.

Given a group Γ of finite homological type, the *Euler characteristic* $\chi(\Gamma)$ of Γ is defined. Namely, when Γ is torsion-free, set

$$\chi(\Gamma) = \sum_{i} (-1)^{i} \operatorname{rank}_{\mathbf{Z}} H_{i}(\Gamma, \mathbf{Z}).$$

When Γ has torsion, set