84. Orders in Quadratic Fields. II

By R. A. Mollin*) and L.-C. ZHANG**)
(Communicated by Shokichi Iyanaga, M. J. A., Nov. 12, 1993)

Abstract

Abstarct: We provide very sharp lower bounds for the class numbers of arbitrary complex quadratic order.

Key words: Complex quadratic order; class number; quadratic polynomial.

The work herein continues that of [5] to which we refer the reader for background information and notation. This also complements the work of the authors in [6] where we dealt with the real case.

Our principal result (Theorem 1 below) provides a sharp lower bound for h_{Δ} when $\Delta<0$ is the discriminant of any complex quadratic order, and yields as a consequence a complete generalization of the well-known result by Rabinowitsch [8] for $h_{\Delta_{0}}=1$, and includes the more recent result by Sasaki [9] for $h_{\Delta_{0}}=2$. Furthermore, our results yield sharper bounds than those given heretofore in the literature such as Oesterlé [7] and Buhler, Gross and Zagier [2]. Most recently Sasaki [9] gave the following lower bound
(*)

$$
h_{\Delta_{0}} \geq d(N(b+\omega))
$$

where b is any non-negative integer with $b \leq\left|\Delta_{0}\right| / 4-1$ and $d(m)$ is the number of (not necessarily distinct) prime divisors of m.

It is in the context of $(*)$ that we couch our main result which will be seen to be a much sharper bound as follows. In the following $D=f^{2} D_{0}$ where D_{0} is the radicand of $\boldsymbol{Q}(\sqrt{\Delta})=\boldsymbol{Q}\left(\sqrt{D_{0}}\right)$.

Theorem 1. Let $\Delta<0$ be a discriminant with odd conductor f. If b is any integer and M is any divisor of $N\left(b+\omega_{\Delta}\right)$ with $M<N\left(\omega_{\Delta}\right)$ and $\operatorname{gcd}(M, f)$ $=1$ then $h_{\Delta} \geq \tau(M)$, the number of distinct positive divisors of M.

Proof. It suffices to show that if $a_{1} \neq a_{2}$ are both divisors of M then $I_{1}=\left[a_{1}, b+\omega_{\Delta}\right]$ is not equivalent to $I_{2}=\left[a_{2}, b+\omega_{\Delta}\right]$. Suppose, to the contrary that $I_{1} \sim I_{2}$.

Claim. There exist relatively prime integers x and y satisfying

$$
\begin{equation*}
\left(\left(\sigma a_{1} x\right)+(\sigma b+\sigma-1) y\right)^{2}-D y^{2}=\sigma^{2} a_{1} a_{2} \tag{1}
\end{equation*}
$$

$a_{2} \mid\left(a_{1} x+(2 b+\sigma-1) y\right)$.
$\sigma^{2} a_{1} a_{2} \mid\left(D-(\sigma b+\sigma-1)^{2}\right) y$.
We only prove the case where $\sigma=1$ since the other case is similar. Since $I_{1} \sim I_{2}$ then there exists an element $\gamma \in I_{1}$ such that $(\gamma) I_{2}=\left(a_{2}\right) I_{1}$

[^0]
[^0]: *) Department of Mathematics and Statistics, The University of Calgary, Canada. The first author's research is supported by NSERC Canada grant \# A8484.
 **) Mathematics Department, Southwest Missouri State University, U. S. A. The second author's research is supported by an SMSU Faculty Summer Fellowship.

