83. Group Rings and the Norm Groups

By Shin-ichi Katayama
Tokushima University
(Communicated by Shokichi IyANAGA, M. J. A., Nov. 12, 1993)

1. Introduction and preliminary lemmas. Let n be a natural number >1 and G be a cyclic group of order n generated by σ. We consider in this note the cyclic extension L / F of fields with the Galois group G. Let $a \in L^{\times}$. The well-known Hilbert theorem 90 asserts that $a^{1+\sigma+\cdots+\sigma^{n-1}}=1$ if and only if there exists $b \in L^{\times}$such that $a=b^{1-\sigma}$. Now let t be an indeterminate and set $D_{n}=\left\{f(t) \in \boldsymbol{Z}[t] \mid f(t)\right.$ divides $\left.t^{n}-1\right\}$. For $f(t) \in D_{n}$, we shall denote $f^{\perp}(t)=\left(t^{n}-1\right) / f(t)$. Obviously one sees $f^{\perp}(t) \in D_{n}$ and $\left(f^{\perp}\right)^{\perp}(t)=f(t)$. We define now:
(1. 1) $f(t) \in D_{n}$ is called of H-type if the following holds:

For any cyclic extension L / F and any $a \in L^{\times}, a^{f(\sigma)}=1$ if and only if there exists $b \in L^{\times}$such that $a=b^{f^{\perp}(\sigma)}$.
If there is no fear of confusion, we shall abbreviate $f(t)$ or $f(\sigma)$ to f. It is obvious that $a=b^{f^{\perp}}$ implies $a^{f}=1$, so that the above definition can be simplified as follows:
(1.2) f is of H-type, if $a^{f(\sigma)}=1$ implies the existence of b with $a=b^{f^{\perp}(\sigma)}$.
$f=t^{n}-1$ is trivially of H-type, and Hilbert theorem 90 says that $f=$ $1+t+\cdots+t^{n-1}$ is of H-type. W. Hürlimann [2] has proved an interesting result ("Cyclotomic Hilbert theorem 90") saying that the n-th cyclotomic polynomial $\Phi_{n}(t)$ is also of H-type.

The aim of this paper is to determine the set of all polynomials ($\in D_{n}$) of H-type, which will be denoted with H_{n}. The result of [2] will be stated as

Lemma 1. $\Phi_{n} \in H_{n}$.
We denote the greatest common divisor and the least common multiple of f, $g \in \boldsymbol{Z}[t]$ by (f, g) and $\{f, g\}$, respectively. If $f, g \in D_{n}$ we have clearly $(f, g),\{f, g\} \in D_{n}$.

Lemma 2. If $f, g \in D_{n}$ are of H-type, then (f, g) and $\{f, g\}$ are of H-type.

Proof. We denote $f_{0}=(f, g)$ and $f=f_{0} f_{1}, g=f_{0} g_{1}$ and $t^{n}-1$ $=f_{0} f_{1} g_{1} h$. We shall show $f_{0}=(f, g)$ is of H-type. For any $a \in L^{\times}$such that $a^{f_{0}}=1$, one sees $a^{f}=1$. Since f is of H-type, there exists $b \in L^{\times}$such that $a=b^{g_{1} h}$. Then $a^{f_{0}}=\left(b^{h}\right)^{g}=1$. Since, g is of H-type, there exists $c \in L^{\times}$ such that $b^{h}=c^{f_{1} h}$. Hence $a=\left(b^{h}\right)^{g_{1}}=c^{f_{1} g_{1} h}=c^{f^{\frac{1}{0}}}$. In the same way as above, one sees that $\{f, g\}$ is also of H-type.

For the case $m \mid n$, we define an injection $\pi_{n / m}$ from D_{m} to D_{n} by putting $\pi_{n / m}(f(t))=f\left(t^{l}\right)$, where $l=n / m$. We shall abbreviate $\pi_{n / m}(f(t))$ to

