80. The Schur Indices of the Irreducible Characters of $G_2(2^n)$

By Hikoe ENOMOTO*) and Zyozyu OHMORI**)

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1993)

Introduction. Let $G_2(q)$ be the finite Chevalley group of type (G_2) over a finite field F_q with q elements. It was shown in [3] that the following theorem holds for odd q:

Theorem. The Schur index $m_Q(\chi)$ of any complex irreducible character χ of $G_2(q)$ with respect to Q is equal to 1.

In this paper, we shall prove that the theorem holds also for $q = 2^n$, as was announced in [3]. The complex irreducible characters of $G_2(2^n)$ have been calculated by the first named author and H. Yamada in [2]. In the following, $G_2(2^n)$ will be denoted simply by G.

Proof of the theorem for $q = 2^n$. For the notation of the conjugacy classes of $G = G_2(2^n)$, the characters of G, or of subgroups of G, etc., we follow those in [2].

Let *B* be the Borel subgroup of *G* and *U* its unipotent part. We first describe the character-values of the Gelfand-Graev character Γ_G of *G* and the induced character $1_U^G = \operatorname{Ind}_U^G(1_U)$; Γ_G is the character of *G* induced by the linear character of *U* given by $x_a(t_1)x_b(t_2)x_{a+b}(t_3)\cdots x_{3a+2b}(t_6) \rightarrow \phi(t_1)\phi(t_2)$, where ϕ is a previously fixed non-trivial additive character of F_{2^n} . There are eight unipotent classes in $G: A_0, A_1, A_2, A_{31}, A_{32}, A_4, A_{51}$ and A_{52} ; representatives of these classes are respectively: h(1, 1, 1) = e, $x_{3a+2b}(1), x_{2a+b}(1), x_{a+b}(1)x_{2a+b}(1), x_{a+b}(1)x_{2a+b}(1)x_{3a+b}(\xi), x_b(1)x_{2a+b}(1)x_{3a+b}(\xi)$. Then we have the following table:

	Γ_{G}	1_U^G
A_0	$(q^2-1)(q^6-1)$	$(q^2-1)(q^6-1)$
A_1	$-q^{2}+1$	$(q^2-1)(q^3-1)$
A_2	$-q^{2}+1$	$(q^2-1)(q-1)(2q+1)$
$A_{_{31}}$	$-q^{2}+1$	$(q-1)^2(4q+1)$
$A_{\scriptscriptstyle 32}$	$-q^{2}+1$	$(q-1)^2(2q+1)$
A_4	$-q^{2}+1$	$(q^2-1)(q-1)$
A_{51}	1	$(q-1)^2$
A_{52}	1	$(q-1)^2$

Since ϕ takes values in Q, Γ_{G} is realizable in Q. Also 1_{U}^{G} is clearly realizable in Q.

^{*)} Department of Mathematics, Keio University.

^(*) Iwamizawa College, Hokkaido University of Education.