68. On the Existence of Characters of the Schur Index 2 of the Simple Finite Steinberg Groups of Type $({}^{2}E_{6})^{*})$

By Zyozyu Ohmori

Iwamizawa College, Hokkaido University of Education (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

Let χ be a complex irreducible character of a finite group and k be a field of characteristic 0. Then we denote by $m_k(\chi)$ the Schur index of χ with respect to k.

It has been known that the simple group $PSU(3, q^2)$ has an irreducible character χ with $m_Q(\chi) = 2$ (R. Gow [4]). In [5], (7.6), G. Lusztig found that $PSU(3, q^2)$ or $PSU(6, q^2)$ has a rational-valued irreducible character χ such that $m_Q(\chi) = m_R(\chi) = m_{Q_p}(\chi) = 2$ (q is a power of p) and $m_{Q_l}(\chi) = 1$ for any prime number $l \neq p$. For $PSU(3, q^2)$, this χ coincides with the one described above. In this note we shall show that the simple finite Steinberg group ${}^2E_6(q^2)$ has (at least) two rational-valued irreducible characters χ such that $m_Q(\chi) = m_R(\chi) = m_{Q_p}(\chi) = 2$ and $m_{Q_l}(\chi) = 1$ for any prime number $l \neq p$. This will follow from Lusztig's classification theory of the unipotent representations of finite groups of Lie type (see [2], pp. 480-481).

I wish to thank Professor K. limura for kindly answering my question on number theory.

Let \mathbf{F}_q be a finite field with q elements, of characteristic p. If X is an algebraic group defined over \mathbf{F}_q , then X(q) denotes the group of \mathbf{F}_q -rational points of X. Then we have

Lemma. Let M be a connected, reductive algebraic group, defined over F_q , whose Coxeter graph is of type $\binom{2}{A_2}$ or $\binom{2}{A_5}$. Let R be a (unique) cuspidal unipotent representation of M(q), with the character χ . Then χ is rational-valued and we have $m_R(\chi) = m_{Q_p}(\chi) = 2$ and $m_{Q_l}(\chi) = 1$ for any prime number $l \neq p$.

This is stated in [5] as (7.6) without detailed proof. We shall now sketch the proof. Let X_f be as in [5], (1.7). Let l be any prime number $\neq p$. For $i \geq 0$, put $H_c^i(X_f) = H_c^i(X_f, \bar{Q}_l) = H_c^i(X_f, Q_l) \otimes \bar{Q}_l$, where \bar{Q}_l is an algebraic closure of Q_l . Then $H_c^i(X_f)$ is a $\bar{Q}_l[M(q)]$ -module defined over Q_l . Let $F: M \to M$ be the Frobenius map. Then F^2 acts on $H_c^i(X_f)$. Let r be the semisimple rank of M. Let V be the F^2 -eigensubspace of $H_c^r(X_f)$ corresponding to the eigenvalue -q (resp. $-q^3$) if r = 2 (resp. if r = 5). Then V is an irreducible M(q)-module and is isomorphic to R. As $H_c^r(X_f)$ is defined over Q_l and $\langle R, H_c^r(X_f) \rangle_{M(q)} = 1$, we have $m_{Q_l}(\chi) = 1$. Since $\langle H_c^i(X_f), H_c^i(X_f) \rangle_{M(q)} = 0$ if $i \neq j$, the character of the virtual module $W = \sum (-1)^i H_c^i(X_f)$ is rational-valued and each irreducible component of W has a different degree, χ is rational-valued (see below). By [5], (4.4), there is a M(q)-equivariant antisymmetric bilinear form on V. As $Q_l \simeq C$, V may be

^{*)} Dedicated to Professor Shizuo Endo.