68. On the Existence of Characters of the Schur Index 2 of the Simple Finite Steinberg Groups of Type $\left.\left({ }^{2} \mathrm{E}_{6}\right){ }^{*}\right)$

By Zyozyu OHMORI
Iwamizawa College, Hokkaido University of Education
(Communicated by Shokichi IYanaga, M. J. A., Oct. 12, 1993)

Let χ be a complex irreducible character of a finite group and k be a field of characteristic 0 . Then we denote by $m_{k}(\chi)$ the Schur index of χ with respect to k.

It has been known that the simple group $\operatorname{PSU}\left(3, q^{2}\right)$ has an irreducible character χ with $m_{\boldsymbol{Q}}(\chi)=2$ (R. Gow [4]). In [5], (7.6), G. Lusztig found that $\operatorname{PSU}\left(3, q^{2}\right)$ or $\operatorname{PSU}\left(6, q^{2}\right)$ has a rational-valued irreducible character χ such that $m_{\boldsymbol{Q}}(\chi)=m_{\boldsymbol{R}}(\chi)=m_{\boldsymbol{Q}_{p}}(\chi)=2\left(q\right.$ is a power of p) and $m_{\boldsymbol{Q}_{l}}(\chi)=$ 1 for any prime number $l \neq p$. For $\operatorname{PSU}\left(3, q^{2}\right)$, this χ coincides with the one described above. In this note we shall show that the simple finite Steinberg group ${ }^{2} E_{6}\left(q^{2}\right)$ has (at least) two rational-valued irreducible characters χ such that $m_{\boldsymbol{Q}}(\chi)=m_{\boldsymbol{R}}(\chi)=m_{\boldsymbol{Q}_{p}}(\chi)=2$ and $m_{\boldsymbol{Q}_{l}}(\chi)=1$ for any prime number $l \neq p$. This will follow from Lusztig's classification theory of the unipotent representations of finite groups of Lie type (see [2], pp. 480-481).

I wish to thank Professor K. Iimura for kindly answering my question on number theory.

Let \boldsymbol{F}_{q} be a finite field with q elements, of characteristic p. If X is an algebraic group defined over \boldsymbol{F}_{q}, then $X(q)$ denotes the group of \boldsymbol{F}_{q}-rational points of X. Then we have

Lemma. Let M be a connected, reductive algebraic group, defined over \boldsymbol{F}_{q}, whose Coxeter graph is of type $\left({ }^{2} A_{2}\right)$ or $\left({ }^{2} A_{5}\right)$. Let R be a (unique) cuspidal unipotent representation of $M(q)$, with the character χ. Then χ is rational-valued and we have $m_{\boldsymbol{R}}(\chi)=m_{\boldsymbol{Q}_{p}}(\chi)=2$ and $m_{\boldsymbol{Q}_{l}}(\chi)=1$ for any prime number $l \neq p$.

This is stated in [5] as (7.6) without detailed proof. We shall now sketch the proof. Let X_{f} be as in [5], (1.7). Let l be any prime number $\neq p$. For $i \geq 0$, put $H_{c}{ }^{i}\left(X_{f}\right)=H_{c}^{i}\left(X_{f}, \overline{\boldsymbol{Q}}_{l}\right)=H_{c}^{i}\left(X_{f}, \boldsymbol{Q}_{l}\right) \otimes \overline{\boldsymbol{Q}}_{l}$, where $\overline{\boldsymbol{Q}}_{l}$ is an algebraic closure of \boldsymbol{Q}_{l}. Then $H_{c}^{i}\left(X_{f}\right)$ is a $\overline{\boldsymbol{Q}}_{l}[M(q)]$-module defined over \boldsymbol{Q}_{l}. Let $F: M \rightarrow M$ be the Frobenius map. Then F^{2} acts on $H_{c}^{i}\left(X_{f}\right)$. Let r be the semisimple rank of M. Let V be the F^{2}-eigensubspace of $H_{c}^{r}\left(X_{f}\right)$ corresponding to the eigenvalue $-q$ (resp. $-q^{3}$) if $r=2$ (resp. if $r=5$). Then V is an irreducible $M(q)$-module and is isomorphic to R. As $H_{c}^{r}\left(X_{f}\right)$ is defined over \boldsymbol{Q}_{l} and $\left\langle R, H_{c}^{r}\left(X_{f}\right)\right\rangle_{M(q)}=1$, we have $m_{\boldsymbol{Q}_{l}}(\chi)=1$. Since $\left\langle H_{c}^{i}\left(X_{f}\right), H_{c}^{j}\left(X_{f}\right)\right\rangle_{M(q)}=0$ if $i \neq j$, the character of the virtual module $W=$ $\sum(-1)^{i} H_{c}^{i}\left(X_{f}\right)$ is rational-valued and each irreducible component of W has a different degree, χ is rational-valued (see below). By [5], (4.4), there is a $M(q)$-equivariant antisymmetric bilinear form on V. As $\boldsymbol{Q}_{l} \simeq \boldsymbol{C}, V$ may be

[^0]
[^0]: *) Dedicated to Professor Shizuo Endo.

