64. On the Asymptotic Formula for the Number of Representations of Numbers as the Sum of a Prime and a k-th Power

By Koichi Kawada
Institute of Mathematics, University of Tsukuba
(Communicated by Shokichi IYanaga, M. J. A., Oct. 12, 1993)

§1. For an integer $k \geq 2$, let $E_{k}(X)$ be the number of natural numbers $n \leq X$ such that n is not representable as the sum of a prime and a k-th power. In 1937, Davenport and Heilbronn [3] proved that $E_{k}(X)=$ $O\left(X(\log X)^{-c_{k}}\right)$ with a positive constant c_{k} depending only on k, in other words, almost all natural numbers are representable as the sum of a prime and a k-th power. After their result, some articles established sharper bounds for $E_{k}(X)$, and, at present, the best result is $E_{k}(X)=O\left(X^{1-\delta_{k}}\right)$ with a positive constant δ_{k} depending only on k, which was proved by A. I. Vinogradov [9] and Brünner, Perelli, and Pintz [1] for $k=2$, and by Plaksin [7] and Zaccagnini [10] for $k \geq 3$. On the difference of the situations between the cases $k=2$ and $k \geq 3$, we relate in $\S 4$ briefly.

On the other hand, let $R_{k}(n)$ be the number of representations of n as the sum of a prime and a k-th power, $\rho_{n}(d)=\rho_{n, k}(d)$ be the number of solutions m of the congruence $m^{k}-n \equiv 0(\bmod d)$ with $1 \leq m \leq d$, and let I_{k} be the set of all natural numbers n such that the polynomial $x^{k}-n$ is irreducible in $\boldsymbol{Q}[x]$, where \boldsymbol{Q} is the rational number field. As for the asymptotic behavior of $R_{k}(n)$, it is conjectured that

$$
R_{k}(n) \sim \bigoplus_{k}(n) \frac{n^{1 / k}}{\log n},
$$

as n tends to the infinity, providing $n \in I_{k}$, where

$$
\mathfrak{S}_{k}(n)=\prod_{p}\left(1-\frac{\rho_{n}(p)-1}{p-1}\right)
$$

and hereafter the letter p stands for prime numbers. For $k=2$, this was conjectured by Hardy and Littlewood [4, Conjecture H], and Miech [6] proved that

$$
R_{2}(n)=\mathscr{F}_{2}(n) \frac{\sqrt{n}}{\log n}\left(1+O\left(\frac{\log \log n}{\log n}\right)\right)
$$

for all but $O\left(X(\log X)^{-A}\right)$ natural numbers $n \leq X$ with any fixed $A>0$. For each $k \geq 3$, we can also establish an asymptotic formula for $R_{k}(n)$ valid for almost all n :

Theorem. For a fixed integer $k \geq 3$, and for any fixed $A>0$, we have

$$
\begin{equation*}
R_{k}(n)=\mathfrak{H}_{k}(n) \frac{n^{1 / k}}{\log n}\left(1+O\left(\frac{\log \log n}{\log n}\right)\right) \tag{1}
\end{equation*}
$$

for $n \leq X$ with at most $O\left(X(\log X)^{-A}\right)$ exceptions.
Because of the possible existence of the Siegel zeros, Miech's result and our result seem the best possible for the present. The proof of our Theorem

