64. On the Asymptotic Formula for the Number of Representations of Numbers as the Sum of a Prime and a k-th Power

By Koichi KAWADA

Institute of Mathematics, University of Tsukuba (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1993)

§1. For an integer $k \ge 2$, let $E_k(X)$ be the number of natural numbers $n \le X$ such that n is not representable as the sum of a prime and a k-th power. In 1937, Davenport and Heilbronn [3] proved that $E_k(X) = O(X(\log X)^{-c_k})$ with a positive constant c_k depending only on k, in other words, almost all natural numbers are representable as the sum of a prime and a k-th power. After their result, some articles established sharper bounds for $E_k(X)$, and, at present, the best result is $E_k(X) = O(X^{1-\delta_k})$ with a positive constant δ_k depending only on k, which was proved by A. I. Vinogradov [9] and Brünner, Perelli, and Pintz [1] for k = 2, and by Plaksin [7] and Zaccagnini [10] for $k \ge 3$. On the difference of the situations between the cases k = 2 and $k \ge 3$, we relate in §4 briefly.

On the other hand, let $R_k(n)$ be the number of representations of n as the sum of a prime and a k-th power, $\rho_n(d) = \rho_{n,k}(d)$ be the number of solutions m of the congruence $m^k - n \equiv 0 \pmod{d}$ with $1 \leq m \leq d$, and let I_k be the set of all natural numbers n such that the polynomial $x^k - n$ is irreducible in Q[x], where Q is the rational number field. As for the asymptotic behavior of $R_k(n)$, it is conjectured that

$$R_k(n) \sim \mathfrak{G}_k(n) \frac{n^{1/k}}{\log n},$$

as *n* tends to the infinity, providing $n \in I_k$, where

$$\mathfrak{G}_k(n) = \prod_p \Big(1 - \frac{\rho_n(p) - 1}{p - 1}\Big),$$

and hereafter the letter p stands for prime numbers. For k = 2, this was conjectured by Hardy and Littlewood [4, Conjecture H], and Miech [6] proved that

$$R_2(n) = \mathfrak{G}_2(n) \frac{\sqrt{n}}{\log n} \left(1 + O\left(\frac{\log \log n}{\log n}\right) \right)$$

for all but $O(X(\log X)^{-A})$ natural numbers $n \leq X$ with any fixed A > 0. For each $k \geq 3$, we can also establish an asymptotic formula for $R_k(n)$ valid for almost all n:

(1) Theorem. For a fixed integer
$$k \ge 3$$
, and for any fixed $A > 0$, we have
 $R_k(n) = \mathfrak{G}_k(n) \frac{n^{1/k}}{\log n} \left(1 + O\left(\frac{\log \log n}{\log n}\right)\right)$

for $n \leq X$ with at most $O(X(\log X)^{-A})$ exceptions.

Because of the possible existence of the Siegel zeros, Miech's result and our result seem the best possible for the present. The proof of our Theorem