54. Gauss Decomposition of Connection Matrices and Application to Yang-Baxter Equation. I

By Kazuhiko AOMOTO^{*)} and Yoshifumi KATO^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 13, 1993)

1. General scheme. Method of Gauss decomposition. Suppose that an $N \times N$ matrix $G = ((g_{i,j}))_{i,j=1}^N$ is given such that all the entries $g_{i,j}$ are functions of $x = (x_1, \ldots, x_m) \in (C^*)^m$. Let \mathfrak{S}_m be the symmetric group of m th degree with the canonical generators $\tau_1, \ldots, \tau_{m-1}, \tau_j$ being the tranposition between the arguments x_j and x_{j+1} . Then we have the Coxeter relations, $\tau_j^2 = e, \tau_j \tau_{j+1} \tau_j = \tau_{j+1} \tau_j \tau_{j+1}$ (e denotes the identity). Let $S : \mathfrak{S}_m \ni \tau \to S_\tau \in GL_N(C)$ be a linear representation of \mathfrak{S}_m , i.e., $S_{\tau\tau'} = S_\tau S_{\tau'}$ and $S_e = 1$ and $\tau, \tau' \in \mathfrak{S}_m$.

We firstly assume the following property for G(x). (1.1) $\tau G(x)$ (defined as $G(\tau^{-1}(x)) = S_{\tau}^{-1} \cdot G(x) \cdot S_{\tau}$ for an arbitrary $\tau \in \mathfrak{S}_{m}$.

for an arbitrary $\tau \in \mathfrak{S}_m$. Let $G(x) = \mathcal{Q}^*(x)^{-1} \cdot \mathcal{Q}(x)$ be a Gauss decomposition of G(x) such that $\mathcal{Q}(x)$ is a lower triangular matrix and $\mathcal{Q}^*(x)$ is an upper triangular one. Let the one cocycle $\{W_{\tau}(x)\}_{\tau \in \mathfrak{S}_m}$ with values in $GL_N(C)$ be defined as $W_{\tau}(x) = \mathcal{Q}(x) \cdot S_{\tau} \cdot (\tau \mathcal{Q}(x))^{-1} = \mathcal{Q}^*(x) \cdot S_{\tau} \cdot (\tau \mathcal{Q}^*(x))^{-1}$ so that we have

(1.2) $W_{\tau\tau'}(x) = W_{\tau}(x) \cdot \tau W_{\tau'}(x)$ and $W_e(x) = 1$.

Secondly we assume that each $W_{ au_r}(x)$ depends only on x_{r+1}/x_r , i.e.,

(1.3) $W_{\tau_r}(x) = W_r(x_{r+1}/x_r), \quad 1 \le r \le m-1.$

The equalities $W_{\tau_j\tau_{j+1}\tau_j} = W_{\tau_{j+1}\tau_j\tau_{j+1}}$ and $W_{\tau_j^2} = 1$ and the cocycle condition shows the Yang-Baxter equation

(1.4) $W_j(u) W_{j+1}(uv) W_j(v) = W_{j+1}(v) W_j(uv) W_{j+1}(u)$ and

(1.5)
$$W_i(u) \ W_i(u^{-1}) = 1.$$

Then we call the matrix G(x) admissible. Admissible matrices appear in a natural manner as connection coefficients among the symmetric A-type Jackson integrals. In this note we shall state their explicit formulae without proof.

2. Symmetric A-type Jackson integrals and the associated principal connection matrices. Let $q \in C$, |q| < 1, be the elliptic modulus. We consider the symmetric A-type q-multiplicative function $\Phi_{n,m}(t)$ of $t = (t_1, \ldots, t_n)$ on the *n*-dimensional algebraic torus $(C^*)^n$,

(2.1) $\Phi_{n,m}(t) = \Phi_{n,m}(t \mid x; \alpha_1, \beta, \gamma)$

$$= \prod_{j=1}^{n} \left\{ t_{j}^{\alpha_{j}} \prod_{k=1}^{m} \frac{(t_{j}/x_{k})_{\infty}}{(t_{j}q^{\beta}/x_{k})_{\infty}} \right\} \prod_{1 \leq i < j \leq n} \frac{(q^{\gamma}t_{j}/t_{i})_{\infty}}{(q^{\gamma}t_{j}/t_{i})_{\infty}}$$

^{*)} Department of Mathematics, Nagoya University.

^(*) Department of Mathematics, Meijo University.