31. On the Second Microlocalization along Isotropic Submanifolds

By Kiyoshi TAKEUCHI

Department of Mathematical Sciences, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., May 12, 1993)

1. Introduction. Around 1985, Lebeau [9] developed the theory of the second microlocalization along isotropic submanifolds, and defined the " Γ -analytic microfunction" that had the unique continuation properties along bicharacteristic leaves. In this paper, we will give an explicit representation using the boundary values of holomorphic functions as Okada-Tose [10] did in the case of regular involutive submanifolds. As a consequence, we prove that " Γ -analytic microfunctions" form a strictly wider subclass of the microfunctions than that of the microfunctions with holomorphic parameters. Moreover, we can show the unique continuation properties of " Γ -analytic microfunctions" elementarily using the local version of Bochner's tube theorem [8]. Note that our methods of proofs are completely different from Lebeau's. We shall announce the results which will be proved in the subsequent paper [7].

2. Lebeau's second FBI-transformation. Let M be open in $\mathbf{R}_x^n = \mathbf{R}_{x'}^d \times \mathbf{R}_{x''}^{n-d}$, X be its complexification. We take coordinates of $T_M^* X \simeq \sqrt{-1} T^* M$ as $(x', x''; \sqrt{-1} \xi' dx' + \sqrt{-1} \xi'' dx'')$, and define its regular involutive submanifold Λ as $\{\xi' = 0\}$. Let $\xi'' \in \mathbb{R}^{n-d}$ be a fixed non zero vector, and set

 $\Gamma := \{ x'' = 0, \, \xi' = 0, \, \xi'' = \dot{\xi}'' \} \subset \Lambda \subset \sqrt{-1} \, T^* M.$ (2.1)

Note that Γ is a bicharacteristic leaf of Λ . The following imbedding is intrin-

sically defined by Lebeau [9] (2.2) $\dot{T}^*\Gamma \ni (x'; \xi^{*'}dx') \mapsto (x' - \sqrt{-1}\xi^{*'}, 0) \in C^d_{z'} \times C^{n-d}_{z''} = C^n_z = X.$ Let u(x) be a hyperfunction with compact support. We follow some definitions of Lebeau [9].

Definition 2.1 (Second FBI-transformation). We define the second FBI-transformation of \boldsymbol{u} along $\boldsymbol{\Gamma}$ by (2.3) $T_{\Gamma}^2 u(z; \lambda, \mu)$

$$:= \int_{\mathbf{R}^{n}} u(x) \exp\left[-\frac{\lambda \mu^{2}}{2} (z'-x')^{2} - \frac{\lambda}{2} (\mu z''-x'')^{2} - \sqrt{-1} \lambda x'' \cdot \dot{\xi}''\right] dx,$$

where $z = (z', z'') \in C_{z'}^d \times C_{z''}^{n-d}$ and $\lambda, \mu > 0$ are parameters.

Lebeau [9] has defined the second wave front set $S_{\Gamma}^{2}u$ of u as a closed subset of C^n in terms of $T_{\Gamma}^2 u$ as follows.

Definition 2.2. For $z \in C^n$, $z \notin S_{\Gamma}^2 u$, if $\exists U$: a neighborhood of z in C^n , $\exists \mu_0 > 0$, $\exists \delta > 0$, and

 $\exists f: (0, \mu_0) \rightarrow \mathbf{R}_+$ (a decreasing function) such that, (2.4)