13. Levi Conditions for Hyperbolic Operators with a Stratified Multiple Variety

By Enrico Bernardi,*) Antonio Bove,*) and Tatsuo Nishitani**)

(Communicated by Kunihiko Kodaira, m. J. A., March 12, 1992)

1. Introduction and result. Let $P\left(x, D_{x}\right)$ be a differential operator of order m, i.e. $P\left(x, D_{x}\right)=P_{m}\left(x, D_{x}\right)+P_{m-1}\left(x, D_{x}\right)+\cdots$, where $P_{j}\left(x, D_{x}\right)$, $j=0, \cdots, m$, denotes the homogeneous part of order j of P (here $D_{x}=$ $(1 / i) \partial / \partial x)$. We assume that P has C^{∞} (smooth) coefficients in the open subset $\Omega \subset R^{n+1}$, and that $0 \in \Omega$. Consider the principal symbol of P, $p_{m}(x, \xi)$, which we shall assume to be a homogeneous polynomial of degree m with real valued smooth coefficients; we say that P is hyperbolic with respect to the direction ξ_{0} if the equation $p_{m}(x, \xi)=0$, where $x=\left(x_{0}, x_{1}, \cdots\right.$, $\left.x_{n}\right), \xi=\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right)$, has only real roots in ξ_{0}. It has long been well known that if P is strictly hyperbolic, i.e. if all the above mentioned roots of $p_{m}(x, \xi)=0$ are distinct, then the Cauchy problem

$$
P\left(x, D_{x}\right)=f,\left.\quad \partial_{0}^{j} u\right|_{x_{0}=0}=g_{j}, \quad j=0, \cdots, m-1,
$$

is well posed. Well posedness, roughly speaking, means that there exists a unique distribution solution for any choice of the distributions f and g_{j} 's. On the other hand, if the roots of $p_{m}(x, \xi)$ are not distinct, it is well known that in general we have well posedness only if we assume some conditions on the lower order terms, see e.g. [7] and [9] in the case of double roots, [10] and [11] in the case of roots of higher multiplicity.

When roots of higher multiplicity occur an important object is the localised principal symbol: If $d^{j} p_{m}(\rho)=0, j=0, \cdots, r-1$, and $d^{r} p_{m}(\rho) \neq 0$, define $p_{m, \rho}(\delta z)=\lim _{t \rightarrow 0} t^{-r} p_{m}(\rho+t \delta z)$, where $\delta z \in T_{\rho}\left(T^{*} \Omega\right)$, the tangent space at ρ of $T^{*} \Omega \simeq \Omega \times \boldsymbol{R}_{\xi}^{n+1}$.

In this note we present a result on necessary conditions for the well posedness of the Cauchy problem for P. Here is a list of the assumptions we make:
$\left(\mathrm{H}_{1}\right)$ The principal symbol $p_{m}(x, \xi)$ is real and hyperbolic with respect to ξ_{0}.
$\left(\mathrm{H}_{2}\right)$ The characteristic roots of $\xi_{0} \mapsto p_{m}\left(x, \xi_{0}, \xi^{\prime}\right)$ have multiplicity of order at most 3 and Char $P=\left\{(x, \xi) \mid p_{m}(x, \xi)=0\right\}=\Sigma_{1} \cup \Sigma_{2} \cup \Sigma_{3}$, where

$$
\begin{aligned}
& \Sigma_{1}=\left\{(x, \xi) \in T^{*} \Omega \mid p_{m}(x, \xi)=0, d p_{m}(x, \xi) \neq 0\right\}, \\
& \Sigma_{2}=\left\{(x, \xi) \in T^{*} \Omega \mid p_{m}(x, \xi)=0, d p_{m}(x, \xi)=0, d^{2} p_{m}(x, \xi) \neq 0\right\}, \\
& \Sigma_{3}=\left\{(x, \xi) \in T^{*} \Omega \mid p_{m}(x, \xi)=0, d p_{m}(x, \xi)=0, d^{2} p_{m}(x, \xi)=0\right\} .
\end{aligned}
$$

Here and in the sequel $x^{\prime}=\left(x_{1}, \cdots, x_{n}\right)$ and analogously for ξ^{\prime}.

[^0]
[^0]: *) Dipartimento di Matematica, Università di Bologna, Italia.
 **) College of General Education, Osaka University, Japan.

