13. Levi Conditions for Hyperbolic Operators with a Stratified Multiple Variety

By Enrico Bernardi,*' Antonio Bove,*' and Tatsuo Nishitani**'

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1992)

1. Introduction and result. Let $P(x, D_x)$ be a differential operator of order m, i.e. $P(x, D_x) = P_m(x, D_x) + P_{m-1}(x, D_x) + \cdots$, where $P_j(x, D_x)$, $j=0, \cdots, m$, denotes the homogeneous part of order j of P (here $D_x = (1/i)\partial/\partial x$). We assume that P has C^{∞} (smooth) coefficients in the open subset $\Omega \subset \mathbb{R}^{n+1}$, and that $0 \in \Omega$. Consider the principal symbol of P, $p_m(x, \xi)$, which we shall assume to be a homogeneous polynomial of degree m with real valued smooth coefficients; we say that P is hyperbolic with respect to the direction ξ_0 if the equation $p_m(x, \xi) = 0$, where $x = (x_0, x_1, \cdots, x_n)$, $\xi = (\xi_0, \xi_1, \cdots, \xi_n)$, has only real roots in ξ_0 . It has long been well known that if P is strictly hyperbolic, i.e. if all the above mentioned roots of $p_m(x, \xi) = 0$ are distinct, then the Cauchy problem

 $P(x, D_x) = f$, $\partial_0^j u|_{x_0=0} = g_j$, $j=0, \dots, m-1$, is well posed. Well posedness, roughly speaking, means that there exists a unique distribution solution for any choice of the distributions f and g_j 's. On the other hand, if the roots of $p_m(x, \xi)$ are not distinct, it is well known that in general we have well posedness only if we assume some conditions on the lower order terms, see e.g. [7] and [9] in the case of double roots, [10] and [11] in the case of roots of higher multiplicity.

When roots of higher multiplicity occur an important object is the localised principal symbol: If $d^{j}p_{m}(\rho)=0$, $j=0, \dots, r-1$, and $d^{r}p_{m}(\rho)\neq 0$, define $p_{m,\rho}(\delta z)=\lim_{t\to 0}t^{-r}p_{m}(\rho+t\delta z)$, where $\delta z\in T_{\rho}(T^{*}\Omega)$, the tangent space at ρ of $T^{*}\Omega\simeq\Omega\times \mathbf{R}_{\varepsilon}^{n+1}$.

In this note we present a result on necessary conditions for the well posedness of the Cauchy problem for P. Here is a list of the assumptions we make:

(H₁) The principal symbol $p_m(x, \xi)$ is real and hyperbolic with respect to ξ_0 .

(H₂) The characteristic roots of $\xi_0 \mapsto p_m(x, \xi_0, \xi')$ have multiplicity of order at most 3 and Char $P = \{(x, \xi) | p_m(x, \xi) = 0\} = \Sigma_1 \cup \Sigma_2 \cup \Sigma_3$, where

 $\Sigma_1 = \{ (x, \xi) \in T^* \Omega \mid p_m(x, \xi) = 0, dp_m(x, \xi) \neq 0 \},\$

 $\Sigma_2 = \{ (x, \xi) \in T^* \Omega \mid p_m(x, \xi) = 0, \ dp_m(x, \xi) = 0, \ d^2 p_m(x, \xi) \neq 0 \},$

 $\Sigma_3 = \{ (x, \xi) \in T^* \Omega \mid p_m(x, \xi) = 0, \ dp_m(x, \xi) = 0, \ d^2 p_m(x, \xi) = 0 \}.$

Here and in the sequel $x' = (x_1, \dots, x_n)$ and analogously for ξ' .

^{*)} Dipartimento di Matematica, Università di Bologna, Italia.

^{**)} College of General Education, Osaka University, Japan.