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The purpose of this note is to present a remark on center-triviality of
certain pro-/) groups. We shall show the following

Theorem 1. Let p be a rational prime, G a pro-p group, and F the trivial

G-module of order p. Suppose that the following three conditions are satisfied.
(1) cdG n < co,
(2) H (G, F.) is finite for i >- O,
(3) 2 (- 1) dimH(G, IZ) 4: O.

Then each open subgroup of G has trivial centralizer in G. In particular, the cen-

ter of G is trivial.
Observing that the conditions (1)-(3) are inherited by any open sub-

group of G, we see that we may prove just the center-triviality of G. The
proof is divided into two steps.

Step 1. Let A Z[[G]] be the complete group algebra of G over the
ring of p-adic integers Z. Then A is a local pseudocompact ring whose
unique open maximal ideal R is the kernel of the canonical augmentation
A- /p. The following ’Nakayama lemma’ due to A. Brumer [1] plays a

crucial role in this step.
Lemma 2 (Brumer). Let A be a pseudocompact ring with radical R, M a

pseudocompact A- module, and let x, ,x, M. If M/RM is (topologically)
generated by the images of x,... ,x,, then M Ax / + Axe.

Proof See [1] Corollary 1.5.
It is remarkable that, in contrast to the usual Nakayama lemma, the

above Brumer’s lemma does not assume the finite generation of M as a

A-module, but does imply it.
Lemma 3. Let G be a pro-p group satisfying the conditions (1),(2) of

Theorem 1. Then the trivial A-module Z has a finite free resolution

(F): O-F,-F,_--, ...-,Fo-*Z,-0,
where each F is a free A-module offinite rank (0 <-- i g n).

Proof We shall follow an argument in Gruenberg [3] 8.1 carefully in
our context.

1 . We first show by induction on N >_ I that there is an exact sequence
of A-modules

(A): OK-F_--, "--FoZ-0,
in which F (0 g i -< n- 1) are free of finite ranks and K is arbitrary. If
N 1, then we can take as Fo A, K the augmentation ideal of A. So
we assume that the exact sequence (A) is obtained. To obtain (A+), it suf-
fices to show that K in the sequence (A) is finitely generated. As the


