68. On the Pro-p Gottlieb Theorem

By Hiroaki NAKAMURA

Department of Mathematics, University of Tokyo (Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1992)

The purpose of this note is to present a remark on center-triviality of certain pro-p groups. We shall show the following

Theorem 1. Let p be a rational prime, G a pro-p group, and F_p the trivial G-module of order p. Suppose that the following three conditions are satisfied.

(1) $cd_{p}G = n < \infty,$

(2)
$$H^{i}(G, \mathbf{F}_{p})$$
 is finite for $i \geq 0$,

(3)
$$\sum (-1)^{i} \dim H^{i}(G, \mathbf{F}_{p}) \neq 0$$

Then each open subgroup of G has trivial centralizer in G. In particular, the center of G is trivial.

Observing that the conditions (1)-(3) are inherited by any open subgroup of G, we see that we may prove just the center-triviality of G. The proof is divided into two steps.

Step 1. Let $\Lambda = \mathbb{Z}_p[[G]]$ be the complete group algebra of G over the ring of p-adic integers \mathbb{Z}_p . Then Λ is a local pseudocompact ring whose unique open maximal ideal R is the kernel of the canonical augmentation $\Lambda \rightarrow \mathbb{Z}/p\mathbb{Z}$. The following 'Nakayama lemma' due to A. Brumer [1] plays a crucial role in this step.

Lemma 2 (Brumer). Let Λ be a pseudocompact ring with radical R, M a pseudocompact Λ -module, and let $x_1, \ldots, x_m \in M$. If M/RM is (topologically) generated by the images of x_1, \ldots, x_m , then $M = \Lambda x_1 + \cdots + \Lambda x_m$.

Proof. See [1] Corollary 1.5.

It is remarkable that, in contrast to the usual Nakayama lemma, the above Brumer's lemma does not assume the finite generation of M as a Λ -module, but does imply it.

Lemma 3. Let G be a pro-p group satisfying the conditions (1),(2) of Theorem 1. Then the trivial Λ -module \mathbb{Z}_p has a finite free resolution:

$$(F): \quad 0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to \mathbb{Z}_p \to 0,$$

where each F_i is a free Λ -module of finite rank $(0 \le i \le n)$.

Proof. We shall follow an argument in Gruenberg [3] 8.1 carefully in our context.

1°. We first show by induction on $N \ge 1$ that there is an exact sequence of Λ -modules

 $(A_N): \quad 0 \to K_N \to F_{N-1} \to \cdots \to F_0 \to \mathbb{Z}_p \to 0,$

in which F_i $(0 \le i \le n-1)$ are free of finite ranks and K_N is arbitrary. If N = 1, then we can take as $F_0 = \Lambda$, K_1 = the augmentation ideal of Λ . So we assume that the exact sequence (A_N) is obtained. To obtain (A_{N+1}) , it suffices to show that K_N in the sequence (A_N) is finitely generated. As the