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1. Introduction. The study of generalized paracompact spaces has be-
come significant in recent years. In addition to the new results in this area
there have been a number of new interesting questions that have arisen from
these studies. In this paper we answer one of these questions by applying a

significant theorem of M.E. Rudin [7].
Definition 1. A family {Fa cr A } is closure-preserving if for ev-

ery subset B
___

A,
U F=UF.
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Likewise, is hereditarily closure-Weserving if for every B - A and {H

fl B} whereHo___ Fo, U Ho UHo.
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Let P be one of the following properties; discrete (/9), locally finite

(LF), hereditarily closure-preserving (HCP), and closure-preserving
(CP). The symbol will denote any countable ordinal.

Definition 2. A space X is B (P, ,)-refinable provided every open cov-

er of X has a refinement $ U {8o: < /} which satisfies i) {U
/ < /} paritions X, ii) for every / </, So is a relatively P collection of
closed subsets of the subspace X-- U {U $.:/z < fl}, and iii) for every

fl < /, U {Ug.:g < } is a closed set.
The collection $ is often called a B (P, )-refinement of
Problem. When are the properties B(D, /)-refinable, B(LF, .)-

refinabl and B (HCP, 2)-refinable equivalent? Partial answers to this ques-
tion are found in [6]. We now provide a more complete answer using the fol-
lowing result [71.

Theorem 1 (Rudin). Let X be a collectionwise normal space and an open
cover of X. If o has a closed hereditarily closure-perserving refinement, then all
has a locally finite closed refinement.

Theorem 2 In a collectionwise normal space X, the following are equivalent.
(i) X is paracompact.
(ii) X is B (D, 2)-refinable.
(iii) X is B (LF, )-refinable.
(iv) X is B (HCP, )-refinable.
Proof. It is known (see [6]) that (i)----(ii)----(iii) and clear that (iii)

(iv). Here we need only show that (iv)= (i). Let a//-- {Ua cr A} be an

open cover ofXand 8 U {8o fl < } a B (HCP, 2)-refinement of . By
Theorem 3 of [6] we have that X is expandable. We construct for each
< /, a LF-open partial refinement W of a// such that W covers (U 8)


