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63. Gamma Factors and Plancherel Measures
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We explicitly calculate gamma factors of Selberg zeta functions and give
a neat formula to the associated Plancherel measures. This report supple-
ments the previous one [7]. The details are described in [8] and will be pub-
lished elsewhere.

§ 1. Selberg zeta functions. We fix the notation for Selberg zeta func-
tions following mainly Selberg[13], Gangolli [5], Fried [4] (¢ = 1), and
Wakayama [15]. Let M = I'\ G/K be a compact locally symmetric space of
rank one. We denote by Z,(s) the Selberg zeta function:

Zy(s)= T TA-N@®™H
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where Prim(M) is the set of prime geodesics of M with the norm function
N (p) = exp(length(p)) and A runs over a certain semi-lattice. We recall
the following fact: Z,(s) has an analytic continuation to all s € C as a
meromorphic function of order dim M and has the following functional equa-
tion

Zy(2 0, — 9) = Zy(s)exp(vol (M) j; " it at).

Here, oo > O and the Plancherel measure g, (¢) calculated by Miatello [12]
are given as follows (we use renormalized p,, &, (¢) and vol(M) to simplify
the constants):
(0) G =S0Q1,2n — 1) (< dim M : odd)

0o = n — 1, u,(it) : polynomial
(1) G =50Q1,2#), pp=n—1/2, dim M = 2,

Uy Gt) = (— D" P, (t) 7 tan(w t),

2 1\*
Pu) = 2yr (= (k= 3))

(2) G=5SUQ02n—1),p0,=n—1/2,dm M = 4n — 2,

U@ty = — P, (t) wtan(x t),
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Pu® = Gu=D1@n = )""H (r=(-3))
(3) G =SUQ,2n), o, = n, dim M = 4n,
Uy (tt) = — P, (t) m cot(m t),
2

P, = (2n)'(2n—1)'t H # — k%
(4) G =Sp(, n), p, = n+1/2 dim M = 4n,
U@ty = Py(t) wtan(zw t),

Pu® = i@ =pril ~ (- %)> k“ (¢ = (- 3))




