60. On Locally Trivial Families of Analytic Subvarieties with Locally Stable Parametrizations of Compact Complex Manifolds

By Syôji TSUBOI

Department of Mathematics, Kagoshima University (Communicated by Kunihiko KODAIRA, M. J. A., Oct. 12, 1992)

Introduction. The purpose of this note is to outline the recent results of our study on locally trivial families, i.e., families which locally are products, of *analytic subvarieties with locally stable parametrizations* of a compact complex manifold (cf. Definition 1.2 below), parametrized by (possibly nonreduced) complex spaces. The main theorem is as follows:

Main theorem. Let Y be a compact complex manifold. We denote by E(Y) the set of all analytic subvarieties with locally stable parametrizations of Y. We denote by Z_t an analytic subvariety with a locally stable parametrization of Y corresponding to a point $t \in E(Y)$. We define a subset $\tilde{\mathscr{Z}}(Y)$ of the product space $Y \times E(Y)$ by

 $\tilde{\mathscr{Z}}(Y) := \{ (y, t) \mid t \in E(Y), y \in Z_t \}.$

We denote by $\tilde{\pi}: \tilde{\mathscr{X}}(Y) \to E(Y)$ the restriction of the projection map $Pr_{E_Y}: Y \times E(Y) \to E(Y)$ to $\tilde{\mathscr{X}}(Y)$. Then E(Y) and $\tilde{\mathscr{X}}(Y)$ have the structure of Hausdorff complex spaces which enjoy the following properties:

(i) $\mathscr{X}(Y)$ is a closed complex subspace of the product complex space $Y \times E(Y)$, and $\tilde{\pi} : \widetilde{\mathscr{X}}(Y) \to E(Y)$ is a locally trivial family of analytic subvarieties with locally stable parametrizations of Y, parametrized by E(Y).

(ii) (Universality) Given a locally trivial family $\pi : \mathcal{X} \to M$ of analytic subvarieties with locally stable parametrizations of Y, parametrized by a complex space M, there exists a unique holomorphic map $f : M \to E(Y)$ such that $f^* \tilde{\mathcal{X}}(Y) = \mathcal{X}$.

(iii) We denote by D(Y) the Duady space of closed complex subspaces of Y, and by $\tilde{\pi}_o: \tilde{\mathcal{U}}(Y) \to D(Y)$ the universal family of closed complex subspaces of Y (cf. [1]). Then the inclusion map $\iota: E(Y) \to D(Y)$ is a holomorphic immersion and $\iota^* \tilde{\mathcal{U}}(Y) = \tilde{\mathcal{X}}(Y)$.

(iv) $(C^{\infty}$ triviality) Let $t_o \in E(Y)$ be a point whose corresponding point of $E(Y)_{red}$ (the reduction of E(Y)) is non-singular, then there exist an open neighborhood N of t_o in E(Y) and a diffeomorphism $\Psi : Y \times N \to Y \times N$ over N (i.e., $pr_N \circ \Psi = pr_N$) such that $\Psi(Z_{t_0} \times N) = \tilde{\pi}^{-1}(N)$.

(v) (C^{∞} type constancy) Let t and t' be two points of the same connected component of E(Y), then there exists a diffeomorphism $\varphi: Y \to Y$ such that $\varphi(Z_t) = Z_{t'}$.

These results might be considered as a generalization of Namba's results in [6] to higher dimensional singular cases. Details will be published elsewhere.