38. Singular Variation of Non-linear Eigenvalues

By Shin Ozawa
Department of Mathematics, Faculty of Sciences, Tokyo Institute of Technology

(Communicated by Kiyosi Itô, m. J. A., June 9, 1992)

1. Introducrion. Recently several papers have appeared concerning semi-linear elliptic boundary value problems. See, for example, Dancer [1], Lin [3], Wang [7] and the literatures cited there.

We consider the following problem. Let M be a bounded domain in \boldsymbol{R}^{3} with smooth boundary ∂M. Let w be a fixed point in M. Removing an open ball $B(\varepsilon ; w)$ of radius ε with the center w from M, we get $M_{\varepsilon}=$ $M \backslash \overline{B(\varepsilon ; w)}$. We consider the minimizing problem (1.1) for $\varepsilon>0$. Fix $p>1$. We put

$$
\begin{equation*}
\lambda(\varepsilon)=\inf _{X_{\varepsilon}} \int_{M_{\varepsilon}}|\nabla u|^{2} d x \tag{1.1}
\end{equation*}
$$

where $X_{\varepsilon}=\left\{u \in H_{0}^{1}\left(M_{\varepsilon}\right),\|u\|_{L^{p+1\left(M_{\varepsilon}\right)}}=1\right\}$. We consider the asymptotic behaviour of $\lambda(\varepsilon)$ as ε tends to 0 . It is well known that there exists at least one positive solution u_{ε} which attains (1.1) $)_{\varepsilon}$ in case of $p \in(1,5)$. We know that the minimizer satisfies $-\Delta u_{\varepsilon}=\lambda(\varepsilon) u_{\varepsilon}^{p}$ in M_{ε} and $u_{\varepsilon}=0$ on ∂M_{ε}. we put

$$
\lambda=\inf _{X} \int_{M}|\nabla u|^{2} d x
$$

where $X=\left\{u \in H_{0}^{1}(M),\|u\|_{L^{p+1(M)}}=1\right\}$.
We have the following
Theorem. Assume that the positive solution of $-\Delta \boldsymbol{u}=\lambda \boldsymbol{u}^{p}$ in M under the Dirichlet condition on ∂M is unique. Assume also that the ground state solution u_{ε} for (1.1) is unique for any small $0<\varepsilon \ll 1$. We assume that $\operatorname{Ker}\left(\Delta+\lambda(\varepsilon) p u_{\varepsilon}^{p-1}\right)=\{0\}$ for $0<\varepsilon \ll 1$. Here u_{ε} is the positive minimizer of (1.1) ${ }_{\varepsilon}$. Then,

$$
\begin{equation*}
\lambda(\varepsilon)-\lambda=4 \pi \varepsilon u(w)^{2}+o(\varepsilon) \tag{1.2}
\end{equation*}
$$

holds for $p \in(1,2)$. Here u is the minimizer with respect to λ.
Remarks. We do not treat the case $p=1$ here. In fact, if $p=1$, then $\lambda(\varepsilon)$, (λ, respectively) is the first eigenvalue of $-\Delta$ in M_{ε} (M, respectively) under the Dirichlet condition and we have an analogous result of (1.2). See [6]. The author wanted to generalize the asymptotic formula for $p=1$ to other cases. This is a motivation of our research.

The domain M such that the number of positive solution of $-\Delta \boldsymbol{u}=\lambda \boldsymbol{u}^{p}$ in M under the Dirichlet condition on ∂M is exactly one is given by Dancer [1], Gidas-Ni-Nirenberg [2].

The author does not know any example of a domain which satisfies the first, the second and the third assumptions in the Theorem. Even if M is a ball with the center w, the author can not prove that the second

