3. On the Inseparable Degree of the Gauss Map of Higher Order for Space Curves

By Masaaki HOMMA*) and Hajime KAJI**)

(Communicated by Heisuke HIRONAKA, M. J. A., Jan. 13, 1992)

Abstract: Let X be a curve non-degenerate in a projective space P^N defined over an algebraically closed field of positive characteristic p, consider the Gauss map of order m defined by the osculating m-planes at general points of X, and denote by $\{b\}_{0 \le j \le N}$ the orders of X. We prove that the inseparable degree of the Gauss map of order m is equal to the highest power of p dividing b_{m+1} .

Key words: Space curve, Gauss map, inseparable degree.

0. Introduction. Let X be an irreducible curve in a projective space P^N defined over an algebraically closed field k of positive characteristic p, C the normalization of X, and $\iota: C \rightarrow P^N$ the natural morphism. Denote by $\iota^{(m)}: C \rightarrow G(P^N, m)$ the Gauss map of order m defined by the osculating mplanes of X, where $G(P^N, m)$ is a Grassmann manifold of m-planes in P^N . Assume that X is non-degenerate in P^N , and let $\{b_j\}_{0 \le j \le N}$ be the orders of ι . The purpose of this short note is to prove

Theorem. The inseparable degree of $\iota^{(m)}$ is the highest power of p dividing b_{m+1} .

In case of m=1, Theorem is known: For N=2, see [4, Proposition 4.4]; for a general N, see [5, Remark below Corollary 2.3], [3, Proposition 4]. A corollary to this result will give a generalization of [5, Theorem 2.1] (see Corollary below).

In case of m=N-1, Theorem coincides with a result of A. Hefez and N. Kakuta, announced in [1]. Although it has not been published yet, according to Hefez [2], their proof for the theorem is similar in spirit to ours (precisely speaking, of the first version), but not identical. Hefez and Kakuta moreover found

Theorem (Hefez-Kakuta). Denote by $C^{(m)}X$ the conormal variety of order m, and by $X^{*(m)}$ the m-dual. Then the inseparable degree of the natural morphism $C^{(m)}X \rightarrow X^{*(m)}$ is equal to the highest power of p dividing b_{m+1} .

This result is stated as a theorem in [2] without proof.

We finally mention that this Theorem of Hefez and Kakuta is deduced also from our theorem and a result in [6] that $C^{(m)}X \rightarrow X^{*(m)}$ has the same inseparable degree as $\iota^{(m)}$, which is proved directly without going through

^{*)} Department of Mathematics, Faculty of Education, Yamaguchi University.

^{**)} Department of Mathematics, Yokohama City University.