83. Embedding into Kac-Moody Algebras and Construction of Folding Subalgebras for Generalized Kac-Moody Algebras

By Satoshi NAITO

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1991)

Introduction. In the preceding paper [5], we defined a regular subalgebra \bar{g} of a symmetrizable Kac-Moody algebra g(A), and showed that \bar{g} is isomorphic to a generalized Kac-Moody algebra (=GKM algebra) $g(\bar{A})$ associated to a canonically defined symmetrizable GGCM \bar{A} , as explained below.

In the first half of this paper, we show that a symmetrizable GKM algebra g(A) can be embedded into some Kac-Moody algebra as a regular subalgebra under a certain weak condition on the GGCM A. In the latter half of this paper, we introduce and study what we call a *folding subalgebra* of a symmetrizable GKM algebra g(A), corresponding to a diagram automorphism π of the GGCM A. This subalgebra is contained in the fixed point subalgebra of an automorphism of g(A) induced by π , and is easier to deal with than the fixed point subalgebra itself.

§1. Embedding of GKM algebras into Kac-Moody algebras.

1.1. Regular subalgebras. Here, we recall the notion of regular subalgebras of symmetrizable Kac-Moody algebras introduced in [5]. For the detailed accounts, see [2], [5], and [6]. Let g(A) be a Kac-Moody algebra associated to a symmetrizable generalized Cartan matrix (=GCM) A over the complex number field C, and \mathfrak{h} its Cartan subalgebra.

Definition 1.1 ([5]). A subset $\overline{\Pi} = {\{\beta_r\}_{r=1}^m}$ of the root system \varDelta of $\mathfrak{g}(A)$ is called *fundamental* if it satisfies the following:

(1) $\beta_1, \beta_2, \dots, \beta_m$ are linearly independent;

- (2) $\beta_i \beta_j \notin \Delta$ $(1 \leq i \neq j \leq m);$
- (3) if β_i is an *imaginary root*, then it is a positive root.

For each imaginary root β_i , we define $\beta_i^{\vee} := \nu^{-1}(\beta_i)$, where $\nu : \mathfrak{h} \to \mathfrak{h}^*$ is a linear isomorphism determined by a standard invariant form $(\cdot | \cdot)$ on $\mathfrak{g}(A)$. For real root β_i , β_i^{\vee} has been defined as a dual real root of β_i . Then, we proved in [5] that $\overline{A} := (\overline{a}_{ij})_{i,j=1}^m$ with $\overline{a}_{ij} = \langle \beta_j, \beta_i^{\vee} \rangle$ is a symmetrizable generalized GCM (=GGCM), that is, \overline{A} satisfies the following :

(C1) either $\bar{a}_{ii} = 2$ or $\bar{a}_{ii} \leq 0$;

- (C2) $\bar{a}_{ij} \leq 0$ if $i \neq j$, and $\bar{a}_{ij} \in \mathbb{Z}$ if $\bar{a}_{ii} = 2$;
- (C3) $\bar{a}_{ij}=0$ implies $\bar{a}_{ji}=0$.

Now, take and fix non-zero root vectors $E_r \in \mathfrak{g}_{\beta_r}$ and $F_r \in \mathfrak{g}_{-\beta_r}$ such that $[E_r, F_r] = \beta_r^{\vee} \ (1 \le r \le m)$. Then,