83. Embedding into Kac-Moody Algebras and Construction of Folding Subalgebras for Generalized Kac-Moody Algebras

By Satoshi Naito
Department of Mathematics, Kyoto University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1991)

Introduction. In the preceding paper [5], we defined a regular subalgebra $\overline{\mathfrak{g}}$ of a symmetrizable Kac-Moody algebra $\mathfrak{g}(A)$, and showed that $\overline{\mathfrak{g}}$ is isomorphic to a generalized Kac-Moody algebra (=GKM algebra) $\mathfrak{g}(\bar{A})$ associated to a canonically defined symmetrizable GGCM \bar{A}, as explained below.

In the first half of this paper, we show that a symmetrizable GKM algebra $g(A)$ can be embedded into some Kac-Moody algebra as a regular subalgebra under a certain weak condition on the GGCM A. In the latter half of this paper, we introduce and study what we call a folding subalgebra of a symmetrizable GKM algebra $g(A)$, corresponding to a diagram automorphism π of the GGCM A. This subalgebra is contained in the fixed point subalgebra of an automorphism of $\mathfrak{g}(A)$ induced by π, and is easier to deal with than the fixed point subalgebra itself.
§ 1. Embedding of GKM algebras into Kac-Moody algebras.
1.1. Regular subalgebras. Here, we recall the notion of regular subalgebras of symmetrizable Kac-Moody algebras introduced in [5]. For the detailed accounts, see [2], [5], and [6]. Let $g(A)$ be a Kac-Moody algebra associated to a symmetrizable generalized Cartan matrix (=GCM) A over the complex number field \boldsymbol{C}, and \mathfrak{G} its Cartan subalgebra.

Definition 1.1 ([5]). A subset $\bar{\Pi}=\left\{\beta_{r}\right\}_{r=1}^{m}$ of the root system Δ of $\mathfrak{g}(A)$ is called fundamental if it satisfies the following:
(1) $\beta_{1}, \beta_{2}, \cdots, \beta_{m}$ are linearly independent;
(2) $\beta_{i}-\beta_{j} \notin \Delta \quad(1 \leq i \neq j \leq m)$;
(3) if β_{i} is an imaginary root, then it is a positive root.

For each imaginary root β_{i}, we define $\beta_{i}^{v}:=\nu^{-1}\left(\beta_{i}\right)$, where $\nu: \mathfrak{h} \rightarrow \mathfrak{h}^{*}$ is a linear isomorphism determined by a standard invariant form $(\cdot \mid \cdot)$ on $g(A)$. For real root $\beta_{i}, \beta_{i}^{\vee}$ has been defined as a dual real root of β_{i}. Then, we proved in [5] that $\bar{A}:=\left(\bar{a}_{i j}\right)_{i, j=1}^{m}$ with $\bar{a}_{i j}=\left\langle\beta_{j}, \beta_{i}^{\vee}\right\rangle$ is a symmetrizable generalized GCM (=GGCM), that is, \bar{A} satisfies the following:
(C1) either $\bar{a}_{i i}=2$ or $\bar{a}_{i i} \leq 0$;
(C2) $\quad \bar{a}_{i j} \leq 0$ if $i \neq j$, and $\bar{a}_{i j} \in Z$ if $\bar{a}_{i i}=2$;
(C3) $\quad \bar{a}_{i j}=0$ implies $\bar{a}_{j i}=0$.
Now, take and fix non-zero root vectors $E_{r} \in \mathfrak{g}_{\beta_{r}}$ and $F_{r} \in \mathfrak{g}_{-\beta_{r}}$ such that $\left[E_{r}, F_{r}\right]=\beta_{r}^{\vee}(1 \leq r \leq m)$. Then,

