81. Remarks on Viscosity Solutions for Evolution Equations

By Yun-Gang CHEN,*) Yoshikazu GIGA,**) and Shun'ichi Goto***)

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1991)

1. Introduction. We consider a degenerate parabolic equation (1) $\partial u/\partial t + F(t, x, u, \nabla u, \nabla^2 u) = 0,$

where ∇ stands for the spatial derivatives. We are concerned with a viscosity subsolution which needs not to be continuous. We say a function u(t, x) defined in a parabolic neighborhood of (t_0, x_0) is left accessible at (t_0, x_0) if there are sequences $x_1 \rightarrow x_0, t_1 \rightarrow t_0$ with $t_1 < t_0$ such that $\lim_{t \to \infty} u(t_1, x_1)$ $=u(t_0, x_0)$. Our goal is to show that a viscosity subsolution is left accessible at each (parabolic) interior point of the domain of definition for a wide class of F. We also clarify the relation between viscocity subsolutions defined on time interval (0, T) and those on (0, T]. Similar problems are studied in other contexts by Crandall and Newcomb [3] and by Ishii [7]. We thank Professor Hitoshi Ishii for pointing out these references.

There are technical errors in the proof of Ishii's lemma up to the terminal time in our previous work [1, Lemma 3.1 and Proposition 3.2]. If we note left accessibility, the proof can be easily fixed. We take this opportunity to correct technical errors in [1] somewhat related to left accessibility. We thank Professor Joseph Fu for pointing out a couple of errors in the proof of [1, Lemma 3.1 and Proposition 3.2].

For $h: L \to \mathbf{R}$ ($L \subset \mathbf{R}^d$) we associate its lower (upper) semicontinuous relaxation $h_*(h^*): \overline{L} \to \widetilde{R} = R \cup \{\pm \infty\}$ defined by

 $h_*(z) = \liminf\{h(y); |z-y| < \varepsilon, y \in L\}, z \in \overline{L}$

and $h^*(z) = -(-h)_*(z)$. Let Ω be an open set in \mathbb{R}^n . For T > 0 let W be a dense subset of $A = (0, T] \times \Omega \times R \times R^n \times S^n$, where S^n denotes the space of $n \times n$ real symmetric matrices. Suppose that F = F(t, x, r, p, X) is a real valued function defined in W. Since W is dense in A, F^* and $F_*: A \to \tilde{R}$ are well-defined. Any function $u: Q \rightarrow \mathbf{R}$ (resp. $Q_0 \rightarrow \mathbf{R}$) is called a viscosity subsolution of (1) in $Q=(0,T]\times \Omega$ (resp. $Q_0=(0,T)\times \Omega$) if $u^* < \infty$ on \overline{Q} and if, whenever $\psi \in C^2(Q)$ (resp. $C^2(Q_0)$), $(t, x) \in Q$ (resp. Q_0) and $(u^* - \psi)(t, x) =$ $\max_{\varrho}(u^* - \psi)$ (resp. $\max_{\varrho_0}(u^* - \psi)$) it holds that

(2) $\psi_t(t,x) + F_*(t,x,u^*(t,x),\nabla\psi(t,x),\nabla^2\psi(t,x)) \leq 0,$

where $\psi_t = \partial \psi / \partial t$. We shall suppress the word viscocity. One can easily observe that u is a subsolution of (1) in Q (resp. Q_0) if and only if u is a subsolution of (1) in $(0,T] \times U(x)$ (resp. $(0,T) \times U(x)$) for all $x \in \Omega$, where U(x) is an open ball centered at x in Ω .

^{*)}

^{**)}

On leave from Nankai Institute of Mathematics, Tianjin, China. Department of Mathematics, Hokkaido University. Department of Applied Science, Faculty of Engineering, Kyushu University. ***)